Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Lợi Thanh Hóa

Nội dung Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Lợi Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát và chọn đội tuyển học sinh giỏi lần 3 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Lê Lợi, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 121 122 123 124 125 126. Trích dẫn Đề HSG lần 3 Toán lớp 12 năm 2022 – 2023 trường THPT Lê Lợi – Thanh Hóa : + Chọn mệnh đề đúng trong các mệnh đề sau: A. Tâm tất cả các mặt của 1 hình lập phương thì tạo thành một hình tứ diện đều. B. Tâm tất cả các mặt của 1 hình lập phương thì tạo thành một hình lập phương. C. Tâm tất cả các mặt của 1 hình tứ diện đều thì tạo thành một hình lập phương. D. Tâm tất cả các mặt của 1 hình tứ diện đều thì tạo thành một hình tứ diện đều. + Người ta làm một thùng hàng hình lăng trụ tam giác đều có chiều cao 10m để chứa ba thiết bị có dạng khối trụ có cùng bán kính đáy là 1m và chiều cao 10m (với thiết diện mặt cắt như hình vẽ). Thể tích của phần không gian trống trong thùng hàng gần với giá trị nào dưới đây nhất? + Cho khối lăng trụ ABC A B C. Khoảng cách từ C đến đường thẳng BB′ bằng 5, khoảng cách từ A đến các đường thẳng BB′ và CC′ lần lượt bằng 1 và 2, hình chiếu vuông góc của A lên mặt phẳng (ABC) là trung điểm M của BC và AM′ = 5. Thể tích của khối tứ diện? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.
Đề chọn học sinh giỏi Toán 12 chuyên năm 2021 - 2022 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Lâm Đồng
Thứ Tư ngày 22 tháng 09 năm 2021, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Lâm Đồng gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút.