Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 lần 2 trường Lương Ngọc Quyến - Thái Nguyên

Chiều thứ Bảy ngày 25 tháng 05 năm 2019, trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 lần thứ 2 dành cho học sinh khối 12, nhằm kiểm tra đánh giá, nắm chất lượng học tập môn Toán 12, đồng thời tạo cơ hội để các em được thử sức và rèn luyện. Đề thi thử Toán THPTQG 2019 lần 2 trường Lương Ngọc Quyến – Thái Nguyên có mã đề 001, đề được biên soạn dựa trên cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 và có độ khó tương đương, đề thi gồm 6 trang, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi thử Toán THPTQG 2019 lần 2 trường Lương Ngọc Quyến – Thái Nguyên : + Một đề thi thử THPT Quốc gia môn Toán dạng trắc nghiệm gồm 12 câu hỏi, mỗi câu hỏi có 5 phương án trả lời, nhưng chỉ có một phương án đúng. Mỗi câu trả lời đúng đươc 4 điểm, mỗi câu trả lời sai bị trừ đi 1 điểm. Một học sinh không học bài nên làm bằng cách chọn hú họa mỗi câu một phương án trả lời. Tính xác suất để học sinh đó bị điểm âm. + Người ta đổ một cái cống bằng cát, đá, xi măng và sắt thép như hình vẽ bên dưới. Thể tích nguyên vật liệu cần dùng là? + Trong mặt phẳng Oxy, gọi A, B, C lần lượt là các điểm biểu diễn các số phức z1 = -3i, z2 = 2 – 2i, z3 = -5 – i. Gọi G là trọng tâm của tam giác ABC. Khi đó điểm G biểu diễn số phức?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp - Hòa Bình lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp – Hòa Bình lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Cho khối tứ diện ABCD. Lấy một điểm M nằm giữa A và B, một điểm N nằm giữa C và D. Bằng hai mặt phẳng(MCD) và (NAB) ta chia khối tứ diện đã cho thành 4 khối tứ diện nào? + Ông Việt dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Tính số tiền tối thiểu x (triệu đồng, x thuộc N) ông Việt gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy giá trị 30 triệu đồng? + Một loại bèo Hoa dâu có khả năng sinh trưởng rất nhanh. Cứ sau một ngày (24 giờ) thì số lượng bèo thu được gấp đôi số lượng bèo của ngày hôm trước đó. Ban đầu người ta thả một cây bèo vào hồ nước (hồ chưa có cây bèo nào) rồi thống kê số lượng bèo thu được sau mỗi ngày. Hỏi trong các kết quả sau đây, kết quả nào không đúng với số lượng bèo thực tế?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Kim Liên - Hà Nội lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Kim Liên – Hà Nội lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên; h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1m và đạt được độ cao 6m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu? + Tính đến 31/12/2015 diện tích rừng trồng ở nước ta là 3 886 337 ha. Giả sử cứ sau một năm diện tích rừng trồng của nước ta tăng 6,1% diện tích hiện có. Hỏi sau ba năm diện tích rừng trồng ở nước ta là bao nhiêu?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lương Thế Vinh - Hà Nội lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lương Thế Vinh – Hà Nội lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong - Nam Định lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong – Nam Định lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án kèm lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và thể tích bằng a^3. Tính chiều cao h của hình chóp đã cho. + Huyện A có 300 nghìn người. Với mức tăng dân số bình quân 1,2%/năm thì sau n năm dân số sẽ vượt lên 330 nghìn người. Hỏi n nhỏ nhất bằng bao nhiêu? + Trong không gian với hệ trục tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng có phương trình lần lượt là 2x – y + z + 2017 = 0 và x + y – z + 5 = 0. Tính số đo độ góc giữa đường thẳng d và trục Oz.