Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục kỳ thi THPT môn Toán Hình học không gian cổ điển và phương pháp tọa độ không gian

Sách gồm 357 trang trình bày chi tiết các vấn đề hình học không gian và phương pháp tọa độ trong không gian (Hình học giải tích không gian). Nội dung sách: Phần 1. Khối đa diện. Phép biến hình trong không gian + Vấn đề 1. Khái niệm về khối đa diện + Vấn đề 2. Phép biến hình trong không gian + Vấn đề 3. Khối đa diện lồi và khối đa diện đều Phần 2. Góc và khoảng cách + Vấn đề 1. Góc trong không gian + Vấn đề 2. Khoảng cách trong không gian Phần 3. Thể tích khối đa diện [ads] Phần 4. Mặt nón – Mặt trụ – Mặt cầu + Vấn đề 1. Mặt nón – Hình nón – Khối nón + Vấn đề 2. Mặt trụ – Hình trụ – Khối trụ Phần 5. Phương pháp tọa độ trong không gian + Vấn đề 1. Hệ tọa độ trong không gian + Vấn đề 2. Tích có hướng và ứng dụng + Vấn đề 3. Viết phương trình mặt phẳng + Vấn đề 4. Viết phương trình đường thẳng + Vấn đề 5. Mặt cầu + Vấn đề 6. Góc trong không gian + Vấn đề 7. Bài toán tìm điểm thuộc đường thẳng thỏa mãn điều kiện cho trước + Vấn đề 8. Bài toán tìm tọa độ hình chiếu của một điểm trên đường thẳng, mặt phẳng + Vấn đề 9. Bài toán về vị trí tương đối liên quan đến đường thẳng, mặt phẳng, mặt cầu Sách do các tác giả: Cao Văn Tuấn, Lê Bá Bảo, Nguyễn Đỗ Chiến, Đặng Quang Hiếu và Nguyễn Mạnh Hùng biên soạn

Nguồn: toanmath.com

Đọc Sách

Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.