Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập cung và góc lượng giác, công thức lượng giác

Tài liệu gồm 76 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). 1. CUNG VÀ GÓC LƯỢNG GIÁC I. Tóm tắt lí thuyết. 1. Khái niệm cung và góc lượng giác. 2. Số đo của cung và góc lượng giác. II. Các dạng toán. Dạng 1. Liên hệ giữa độ và rađian. Dạng 2. Độ dài cung lượng giác. Dạng 3. Biểu diễn cung lượng giác trên đường tròn lượng giác. 2. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG I. Tóm tắt lí thuyết. 1. Định nghĩa. 2. Hệ quả. 3. Ý nghĩa hình học của tang và côtang. 4. Công thức lượng giác cơ bản. 5. Giá trị lượng giác của các cung có liên quan đặc biệt. II. Các dạng toán. Dạng 1. Dấu của các giá trị lượng giác. Dạng 2. Tính giá trị lượng giác của một cung. Dạng 3. Sử dụng cung liên kết để tính giá trị lượng giác. Dạng 4. Rút gọn biểu thức và chứng minh đẳng thức. 3. CÔNG THỨC LƯỢNG GIÁC I. Công thức cộng. Dạng 1. Công thức cộng. II. Công thức nhân đôi. III. Các dạng toán. Dạng 2. Tính các giá trị lượng giác của các góc cho trước. Dạng 3. Rút gọn biểu thức cho trước. Dạng 4. Chứng minh đẳng thức lượng giác. IV. Công thức biến đổi. Dạng 5. Biến đổi một biểu thức thành một tổng hoặc thành một tích. Dạng 6. Chứng minh một đẳng thức lượng giác có sử dụng nhóm công thức biến đổi. Dạng 7. Dùng công thức biến đổi để tính giá trị (rút gọn) của một biểu thức lượng giác. Dạng 8. Nhận dạng tam giác. Một số hệ thức trong tam giác. 4. ĐỀ KIỂM TRA CHƯƠNG VI I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b. VII. Đề số 4a. VIII. Đề số 4b. IX. Đề số 5a. X. Đề số 5b.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải các dạng toán hàm số lượng giác - Lê Đức Thiệu
Tài liệu gồm 44 trang tuyển tập các dạng toán, phương pháp giải và bài tập chủ đề hàm số lượng giác + 4 cấp độ Nhận biết – Thông hiểu – Vận dụng – Vận dụng cao trong từng vấn đề + Bao phủ các dạng bài có thể xuất hiện trong các bài kiểm tra, các đề thi + Đa dạng cách hỏi (khó sử dụng casio để thử trong các bài toán hay & khó) + Có kết hợp sử dụng Casio giải nhanh
Chuyên đề hàm số lượng giác và phương trình lượng giác - Võ Anh Dũng
I. CÁC HÀM SỐ LƯỢNG GIÁC + Dạng 1: Tìm tập xác định của hàm số + Dạng 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác + Dạng 3: Tìm chu kỳ của hàm số lượng giác + Dạng 4: Xét tính đồng biến, nghịch biến của hàm số lượng giác II. PHƯƠNG TRÌNH LƯỢNG GIÁC [ads] 1. Phương trình lượng giác cơ bản 2. Phương trình bậc hai đối với một hàm số lượng giác 3. Phương trình bậc nhất đối với sinx và cosx 4. Phương trình dẳng cấp bậc hai 5. Phương trình đối xứng III. BÀI TẬP TRẮC NGHIỆM
Bài thơ, bài vè, mẹo học nhanh công thức lượng giác
Bộ sưu tập một số mẹo học nhanh công thức Lượng Giác bằng cách sử dụng nghệ thuật thơ dân gian. Mặc dù các bài thơ không bao giờ là cách học công thức hiệu quả nhất, song những vần nhịp và sắc thái dân gian của nó cũng là một phương pháp ghi nhớ đáng để nghiên cứu và phát triển. 1. Định nghĩa giá trị lượng giác 2. Giá trị LG thông dụng 3. Tính chất 3.1. Cung liên kết 3.2. Dấu [ads] 4. Công thức LG 4.1. Công thức cộng 4.2. Công thức biến tích thành tổng 4.3. Công thức biến tổng thành tích 4.4. Công thức nhân ba 4.5. Đẳng thức LG trong tam giác 4.6. Bốn công thức tổng quát hữu dụng
Hướng dẫn sử dụng máy tính cầm tay giải phương trình bậc nhất theo SIN và COS - Dương Trác Việt
Trên cả ba phương diện tự luận, bán tự luận – điền khuyết và trắc nghiệm, bài viết đề cập quá trình tư duy, thao tác bấm máy và cách trình bày khi giải quyết các phương trình lượng giác cổ điển đối với sine và cosine. Tùy vào hình thức kiểm tra đánh giá và mức độ phức tạp của đề bài mà việc sử dụng máy tính cầm tay sẽ hỗ trợ một phần hoặc toàn bộ quá trình tìm ra phương án. Với dạng thức điền khuyết, tối ưu hóa con đường tự luận bằng cách dùng công thức hệ quả là một hướng tiếp cận an toàn nhưng tạo thêm áp lực ghi nhớ cho người học. Ở một phương diện khác, phương pháp Newton – Raphson có vẻ như khắc phục hoàn toàn hạn chế nói trên lại đòi hỏi tư duy linh hoạt trong xử lý khoảng chứa nghiệm – vốn còn khá lạ lẫm với đa số học sinh đại trà. [ads] Ở những câu hỏi trắc nghiệm khó, thí sinh cần trang bị thêm kỹ năng chuẩn hóa họ nghiệm và loại bỏ các nghiệm thuộc cùng một họ để vượt qua phương án nhiễu và xác định phương án đúng. Bên cạnh đó, năng lực “quy lạ về quen” cũng là cứu cánh trước những dạng bài tập mà các em chưa gặp bao giờ, vì thế cần phải tôi luyện kỹ. Nhìn chung, học sinh nên cân nhắc việc sử dụng máy tính cầm tay một cách hợp lý, tránh phụ thuộc hoàn toàn vào công cụ này. Đồng thời giáo viên cũng cần quan tâm đúng mức đến vấn đề tối ưu hóa cách giải tự luận theo định hướng trắc nghiệm khách quan nhằm đáp ứng thực tiễn bối cảnh hiện nay.