Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát năng lực Toán 11 năm 2018 - 2019 trường Triệu Quang Phục - Hưng Yên lần 2

Đề khảo sát năng lực Toán 11 năm 2018 – 2019 trường Triệu Quang Phục – Hưng Yên lần 2 mã đề 212 được biên soạn nhằm đánh giá chất lượng Toán 11 thường xuyên để giúp học sinh củng cố, nâng cao kiến thức – kỹ năng giải toán, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành bài thi này, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2018. Trích dẫn đề khảo sát năng lực Toán 11 năm 2018 – 2019 trường Triệu Quang Phục – Hưng Yên lần 2 : + Trong kì thi đánh giá năng lực lần I năm học 2018 – 2019 của trường THPT Triệu Quang Phục, kết quả có 86 thí sinh đạt điểm giỏi môn Toán, 61 thí sinh đạt điểm giỏi môn Vật lí và 76 thí sinh đạt điểm giỏi môn Hóa học, 45 thí sinh đạt điểm giỏi cả hai môn Toán và Vật lí, 21 thí sinh đạt điểm giỏi cả hai môn Vật lí và Hóa học, 32 thí sinh đạt điểm giỏi cả hai môn Toán và Hóa học, 18 thí sinh đạt điểm giỏi cả ba môn Toán, Vật lí và Hóa học. Có 782 thí sinh mà cả ba môn đều không đạt điểm giỏi. Hỏi trường THPT Triệu Quang Phục có bao nhiêu thí sinh tham dự kì thi đánh giá năng lực lần I năm học 2018-2019? [ads] + Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0,9; 0,7 và 0,8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên. + Một đoàn tình nguyện, đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em được nhận 2 suất quà khác loại (ví dụ: 1 chiếc áo và 1 thùng sữa tươi). Trong số các em được nhận quà có hai em Việt và Nam. Tính xác suất để hai em Việt và Nam đó nhận được suất quà giống nhau?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.
Khảo sát chuyên đề Toán 11 lần 1 năm học 2017 - 2018 trường Nguyễn Thị Giang - Vĩnh Phúc
Đề thi khảo sát chuyên đề Toán 11 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong những khẳng định sau đây, khẳng định nào sai? A. Hàm số y = cotx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx là hàm tuần hoàn với chu kì 2π C. Hàm số y = cos(x^3) là hàm số chẵn D. Hàm số y = tanx đồng biến trên khoảng (0; π) [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: 2x – y + 1 = 0 và véctơ v = (2; -3). Phép tịnh tiến theo véctơ v biến d thành d’. Phương trình đường thẳng d’ là: A. 2x – 3y + 1 = 0 B. 2x – y – 7 = 0 C. 2x – y + 6 = 0 D. 2x – y – 6 = 0 + Để có được đồ thị hàm số y = cosx, ta thực hiện phép tịnh tiến đồ thị hàm số y = sinx: A. Sang phải π đơn vị B. Sang trái 2π đơn vị C. Sang phải 2π đơn vị D. Sang trái π đơn vị