Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế

Cuốn sách Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế – Trần Công Diêu, Nguyễn Văn Quang gồm 444 trang phân dạng, tuyển chọn và hướng dẫn giải các bài toán trắc nghiệm thực tế và các bài toán vận dụng cao trong các đề thi thử môn Toán. Chương 1. Bài toán vận dụng cao chuyên đề ứng dụng đạo hàm Chủ đề 1. Các bài toán thực tế ứng dụng đạo hàm để giải + Dạng 1. Một số bài toán ứng dụng về kinh doanh, sản xuất trong đời sống + Dạng 2. Một số bài toán ứng dụng về chuyển động Chủ đề 2. Tìm giá trị của tham số để hàm số đơn điệu trên miền D Chủ đề 3. Giải và biện luận phương trình, bất phương trình dựa vào hàm số Chủ đề 4. Tìm giá trị của tham số để hàm số có cực trị thỏa mãn các yếu tố đặc biệt Chủ đề 5. Tìm giá trị của tham số để 2 hàm số giao nhau thỏa mãn các yếu tố đặc biệt Chủ đề 6. Tìm giá trị của tham số để tiếp tuyến của hàm số thỏa mãn các yếu tố đặc biệt Chương 2. Bài toán vận dụng cao chuyên đề hàm số mũ, logarit Chủ đề 1. Tính số chữ số của một số tự nhiên Chủ đề 2. Các dạng bài toán lãi suất Chủ đề 3. Các dạng toán khác: Hàm số mũ và hàm số logarit còn được áp dụng trong các bài toán tính dân số, tính lượng khí, tính độ pH [ads] Chương 3. Bài toán vận dụng cao nguyên hàm, tích phân Chủ đề 1. Các bài toán nguyên hàm Chủ đề 2. Các bài toán tích phân Chủ đề 3. Ứng dụng tích phân để tính diện tích, thể tích Chủ đề 4. Ứng dụng tích phân giải bài toán vật lý và bài toán thực tế Chương 4. Bài toán vận dụng cao số phức Chủ đề 1. Các bài toán tính toán số phức Chủ đề 2. Phương trình số phức Chủ đề 3. Các bài toán liên quan đến biểu diễn điểm, tập hợp điểm Chương 5. Bài toán vận dụng cao hình học không gian Chủ đề 1. Thể tích khối đa diện Chủ đề 2. Mặt cầu – Khối cầu Chủ đề 3. Mặt nón – Khối nón Chủ đề 4. Mặt trụ – Khối trụ Chủ đề 5. Ứng dụng hình học không gian giải các bài toán thực tế Chương 6. Bài toán vận dụng cao hình học Oxyz Chủ đề 1. Tọa độ của điểm và vectơ trong không gian Chủ đề 2. Mặt phẳng trong không gian Chủ đề 3. Đường thẳng trong không gian Chủ đề 4. Mặt cầu Xem thêm : + Tổng hợp 250 câu hỏi trắc nghiệm vận dụng cao – Nhóm Toán   + Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử – Nguyễn Văn Rin

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Hiện nay, một số trường THPT trên cả nước đã bắt đầu cho học sinh trở lại trường, sau một khoảng thời gian rất dài phải nghỉ học do bệnh dịch. Và sắp tới là quãng thời gian các em phải “tăng tốc” để có thể hoàn thành chương trình của năm học, nhất là với các em học sinh khối 12, còn phải chuẩn bị cho kỳ thi THPT Quốc gia do Bộ Giáo dục và Đào tạo tổ chức. Nhằm giúp các em trong quá trình học tập, sưu tầm và giới thiệu đến các em tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020, đây là một sản phẩm của tập thể quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em. Tài liệu gồm có 218 trang, sáng tạo và phát triển một số câu hỏi và bài tập dựa trên cấu trúc đề minh họa THPTQG 2020 môn Toán, có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020: + Cho hàm số y = |8x^4 + ax2 + b|. Trong đó a, b là các hệ số thực. Tìm mối liên hệ giữa a và b để giá trị lớn nhất của hàm số đã cho trên đoạn [−1; 1] bằng 1? + Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để chọn được số có chữ số hàng trăm, chữ số hàng đơn vị và tổng các chữ số theo thứ tự tạo thành 1 cấp số cộng có công sai dương. + Trong mặt phẳng tọa độ A, B, C là ba điểm biểu diễn lần lượt cho ba số phức z1 = 5 − i, z2 = (4 + i)^2 và z3 = (2i)^3. Diện tích của tam giác ABC là kết quả nào dưới đây?
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Tài liệu gồm 105 trang được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tập trung khai thác và phát triển các câu hỏi và bài toán trong đề minh họa THPT Quốc gia 2020 môn Toán. Với mỗi bài toán, tài liệu trình bày lời giải chi tiết theo nhiều cách (nếu có), cùng với đó là một số câu hỏi và bài toán tương tự; qua đó giúp học sinh rèn luyện với những dạng toán bám sát, chất lượng. Tài liệu được chia thành hai phần dựa theo mức độ nhận thức: + Phần 1. Mức độ Nhận biết – Thông hiểu: Từ trang 1 đến trang 68. + Phần 2. Mức độ Vận dụng: Từ trang 69 đến trang 105. [ads] Trích dẫn đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề: + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác vuông có diện tích bằng 4. Góc giữa đường cao của hình nón và mặt phẳng thiết diện bằng 30◦. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f (sinx) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S) : x2 + y2 + z2 − 4x − 2y + 2z − 3 = 0 và một điểm M (4; 2; −2). Mệnh đề nào sau đây là đúng? A. Điểm M là tâm của mặt cầu (S). B. Điểm M nằm trên mặt cầu (S). C. Điểm M nằm trong mặt cầu (S). D. Điểm M nằm ngoài mặt cầu (S).
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Dựa trên đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố, vừa qua, tập thể quý thầy, cô giáo nhóm Toán VD – VDC đã biên soạn bộ câu hỏi và bài tập phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán, nhằm giúp các em học sinh khối 12 có được tài liệu ôn tập bám sát, chất lượng để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán gồm có 42 trang, là sản phẩm đặc biệt của Tổ Phản Biện Các Sản Phẩm Quan Trọng Của Nhóm Toán VD – VDC. Với mỗi câu trong đề, tài liệu bổ sung thêm 3-5 câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. Trích dẫn bộ đề phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: + Định hướng xây dựng bài toán: Bài toán giữ nguyên ý tưởng câu 43 (sử dụng phương pháp đặt ẩn phụ) thay đổi cách đặt vấn đề và phương trình mũ thay cho phương trình logarit: “Tính tổng T các giá trị nguyên của tham số m để phương trình 3^x + (m^2 – m)3^-x = 2m có đúng hai nghiệm phân biệt nhỏ hơn 1/log3”. [ads] + Phát triển câu 32, sử dụng ứng dụng của tích vô hướng vào việc quỹ tích điểm M thỏa mãn đẳng thức cho trước, bài toán có sử dụng việc khai thác điểm trung gian: “Trong không gian Oxyz, cho A(2;0;4) và B(0;-6;0), M là một điểm bất kỳ thỏa mãn 3MA^2 + 2MB^2 = 561/280AB^2. Khi đó M thuộc mặt cầu có bán kính là giá trị nào dưới đây?” + Phát triển câu 50 thành bài toán tìm khoảng đồng biến và nghịch biến của hàm số chứa dấu giá trị tuyệt đối: “Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau. Hàm số g(x) = |4f(x) + x^2| đồng biến trên khoảng nào dưới đây?”
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Tài liệu gồm có 39 trang được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, trình bày lời giải chi tiết và đi sâu phân tích một số bài toán vận dụng – vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020; cụ thể đó là các bài toán: câu 38, câu 43, câu 46, câu 48, câu 49, câu 50; qua đó giúp học sinh có những cách tiếp cận khác nhau đối với những dạng toán VD – VDC trong các đề thi THPT quốc gia. Trong mỗi bài toán cụ thể, tác giả trình bày lời giải chi tiết của bài toán để tìm đáp án theo nhiều cách khác nhau, với mỗi cách đều có nhận xét về tính ưu việt của phương pháp; sau đó là một số bài toán tương tự, phát triển và mở rộng bài toán gốc, kèm theo hướng dẫn giải. Trích dẫn tài liệu phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn log_3 (3x + 3) + x = 2y + 9^y? A. 2019. B. 6. C. 2020. D. 4. +  Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d có các điểm cực trị là 0;a (2 < a < 3) và có đồ thị là đường cong như hình vẽ. Đặt g(x) = 2019f(f(x)) + 2020. Số điểm cực trị của hàm số là? A. 2. B. 8. C. 10. D. 6. + Cho tứ diện ACFG có số đo các cạnh lần lượt là AC = AF = FC = a√2, AG = a√3, GF = GC = a. Thể tích của khối tứ diện ACFG bằng? Xem thêm : Đáp án và lời giải chi tiết đề minh họa THPT Quốc gia 2020 môn Toán