Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán

Tài liệu gồm 689 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán. Bài 1. Phép Đếm 1. Bài 2. Cấp Số Cộng – Cấp Số Nhân 8. Bài 3. Sử Dụng Các Công Thức Liên Quan Đến Hình Nón 14. Bài 4. Xét Sự Đơn Điệu Dựa Vào Bảng Biến Thiên 23. Bài 5. Thể Tích Khối Lăng Trụ Đều 31. Bài 6. Giải Phương Trình -Bất Phương Trình Logarit 40. Bài 7. Sử Dụng Tính Chất Của Tích Phân 50. Bài 8. Cực Trị Hàm Số 61. Bài 9. Khảo Sát Hàm Số – Nhận Dạng Hàm Số, Đồ Thị 70. Bài 10. Sử Dụng Tính Chất Của Logarit 82. Bài 11. Tính Nguyên Hàm Bằng Cách Sử Dụng Tính Chất Của Nguyên Hàm 89. Bài 12. Khái Niệm Số Phức 97. Bài 13. Bài Toán Tìm Hình Chiếu Của Điểm Trên Mặt Phẳng Tọa Độ 104. Bài 14. Xác Định Tâm, Bán Kính, Diện Tích, Thể Tích Của Mặt Cầu 115. Bài 15. Xác Định Vectơ Pháp Tuyến Của Mặt Phẳng 124. Bài 16. Phương Trình Đường Thẳng 131. Bài 17. Xác Định Góc Giữa Hai Đường Thẳng, Đường Thẳng Và Mặt Phẳng, Hai Mặt Phẳng 141. Bài 18. Đếm Số Điểm Cực Trị Dựa Vào Bảng Biến Thiên 156. Bài 19. Tìm Giá Trị Lớn Nhất- Giá Trị Nhỏ Nhất Của Hàm Số Trên Một Đoạn 167. Bài 20. Biến Đổi Biểu Thức Lôgarit 176. Bài 21. Phương Trình, Bất Phương Trình Mũ Và Logarit 185. Bài 22. Khối Trụ 192. Bài 23. Liên Quan Giao Điểm Từ Hai Đồ Thị 203. Bài 24. Nguyên Hàm Cơ Bản 217. Bài 25. Toán Thực Tế Sử Dụng Hàm Mũ Và Lôgarit 226. Bài 26. Tính Thể Tích Khối Lăng Trụ Đứng 236. Bài 27. Tiệm Cận Của Đồ Thị Hàm Số 251. Bài 28. Tính Chất Đồ Thị – Hàm Số – Đạo Hàm 260. Bài 29. Ứng Dụng Tích Phân 271. Bài 30. Các Phép Toán Số Phức 285. Bài 31. Biểu Diễn Hình Học Của Số Phức 292. Bài 32. Tích Vô Hướng Của Hai Vectơ Trong Không Gian 299. Bài 33. Viết Phương Trình Mặt Cầu 305. Bài 34. Phương Trình Mặt Phẳng Liên Quan Đến Đường Thẳng 312. Bài 35. Tìm Véc-Tơ Chỉ Phương Của Đường Thẳng 322. Bài 36. Tính Xác Suất Của Biến Cố Bằng Định Nghĩa 331. Bài 37. Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau 349. Bài 38. Tích Phân Cơ Bản (A), Kết Hợp (B) 371. Bài 39. Tìm Tham Số Để Hàm Số Bậc 1 Trên Bậc 1 Đơn Điệu 395. Bài 40. Khối Nón 416. Bài 41. Lôgarit 435. Bài 42. Max, Min Của Hàm Trị Tuyệt Đối Có Chứa Tham Số 454. Bài 43. Phương Trình Logarit Có Chứa Tham Số 474. Bài 44. Nguyên Hàm Từng Phần 494. Bài 45. Liên Quan Đến Giao Điểm Của Hai Đồ Thị 513. Bài 46. Tìm Cực Trị Của Hàm Số Hợp Khi Biết Đồ Thị Hàm Số 545. Bài 47. Ứng Dụng Phương Pháp Hàm Số Giải Phương Trình Mũ Và Logarit 576. Bài 48. Tích Phân Liên Quan Đến Phương Trình Hàm Ẩn 602. Bài 49. Tính Thể Tích Khối Chóp Biết Góc Giữa Hai Mặt Phẳng 627. Bài 50. Tính Đơn Điệu Của Hàm Số Liên Kết 652.

Nguồn: toanmath.com

Đọc Sách

Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB
Nội dung Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB Bản PDF - Nội dung bài viết Giới thiệu về sách Công phá kỹ thuật CasioNội dung chính của sách Giới thiệu về sách Công phá kỹ thuật Casio Sytu đem đến cho bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – một nguồn tư liệu quý giá giúp bạn tự tin hơn khi học Toán ở các cấp độ lớp 10, 11, 12. Cuốn sách này có tổng cộng 496 trang và được biên soạn bởi hai tác giả tài năng Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính của sách Trước hết, trong phần 1 của sách, bạn sẽ được giới thiệu tổng quan về các tính năng trên máy tính Casio cầm tay. Tất cả các phím chức năng và công dụng của chúng được trình bày một cách chi tiết và đầy đủ, giúp bạn hiểu rõ hơn về cách sử dụng máy tính Casio trong giải toán, đặc biệt phù hợp với những học sinh mới bắt đầu làm quen với máy tính này. Phần 2 của sách tập trung vào các chủ đề Toán sử dụng máy tính Casio, bao gồm 11 chủ đề từ lớp 10 đến lớp 12. Các chủ đề này bao gồm cả đại số, giải tích và hình học, với nội dung về hàm số, giới hạn, tổ hợp, xác suất, hàm số lượng giác, phương trình, hệ phương trình, bất phương trình, và nhiều nội dung khác. Mỗi chủ đề được trình bày kỹ lưỡng, cung cấp ví dụ và bài tập rèn luyện, giúp bạn hiểu rõ hơn cách giải và áp dụng công thức vào thực tế. Cuối cùng, sách còn cung cấp các kỹ thuật bổ trợ, công thức giải nhanh cùng ví dụ áp dụng và hướng dẫn chi tiết để bạn có thể áp dụng kiến thức một cách linh hoạt và hiệu quả.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long
Nội dung Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long Bản PDF - Nội dung bài viết Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu này bao gồm 71 trang chọn lọc và hướng dẫn chi tiết cách giải một số bài toán thực tế sử dụng kiến thức Toán từ lớp 10 đến lớp 12. Việc áp dụng kiến thức toán học vào việc giải quyết các vấn đề thực tế là một phần quan trọng trong quá trình dạy và học toán ở trường phổ thông. Điều này được thể hiện rõ trong đề thi THPT quốc gia và các đề thi minh họa từ Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện tại, đặc biệt là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có thể được áp dụng vào việc giải quyết bài toán thực tế, như Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (lớp 12) và nhiều chủ đề khác. Qua tài liệu này, Trần Hoàng Long đã phân loại bài tập theo từng chủ đề kiến thức, tập trung vào việc sưu tầm các tình huống thực tiễn để từ đó tạo ra các bài toán thực tế cần giải quyết, áp dụng kiến thức toán học để giải quyết vấn đề. Ông cũng xây dựng hệ thống bài toán thực tế theo từng chủ đề kiến thức, giúp học sinh rèn luyện kỹ năng áp dụng kiến thức toán vào thực tiễn. Các chủ đề trong tài liệu bao gồm: Đạo hàm: Một công cụ quan trọng để tìm cực trị, giá trị lớn nhất, nhỏ nhất của hàm số. Được áp dụng để giải quyết những bài toán thực tế hấp dẫn và ý nghĩa. Hàm số: Từ tình huống thực tế, ta thu thập số liệu, lập hàm số và khảo sát để đưa ra phương án tối ưu. Hệ bất phương trình bậc nhất hai ẩn: Chủ đề này khai thác nhiều dạng toán gần gũi với cuộc sống như bài toán vận tải, sản xuất đồng bộ, lập kế hoạch sản xuất, vốn đầu tư nhỏ nhất, pha trộn v.v. Tài liệu này hướng đến việc giúp học sinh áp dụng kiến thức toán học vào thực tiễn một cách hiệu quả, và mong muốn nhận được phản hồi tích cực từ giáo viên và học sinh để cải thiện tài liệu trong tương lai.
Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế
Nội dung Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Cuốn sách "Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế" của tác giả Trần Công Diêu và Nguyễn Văn Quang bao gồm 444 trang chuyên sâu, giúp bạn hiểu rõ và áp dụng các phương pháp giải bài toán thực tế và bài toán cao cấp trong các lĩnh vực khác nhau. Sách này đã được tuyển chọn kỹ lưỡng và hướng dẫn cách giải chi tiết, từng bước một, giúp bạn nâng cao kỹ năng giải quyết vấn đề một cách hiệu quả. Với nhiều bài toán thực tế và vận dụng cao, cuốn sách cung cấp cho bạn kiến thức sâu rộng và những kỹ năng cần thiết để áp dụng vào thực tế.
Sổ tay Hình học 10 11 12
Nội dung Sổ tay Hình học 10 11 12 Bản PDF - Nội dung bài viết Sổ tay Hình học 10 11 12: Thông tin chi tiết Sổ tay Hình học 10 11 12: Thông tin chi tiết Cuốn sổ tay Hình học 10 - 11 - 12 là tài liệu hữu ích giúp học sinh lớp 10, 11, 12 nắm vững lý thuyết, công thức và phương pháp giải các dạng toán hình học một cách nhanh chóng. Với 76 trang, sổ tay được chia thành 5 chương chính bao gồm: Chương 1: Vectơ - bao gồm kiến thức cơ bản về vectơ và cách sử dụng trong giải toán. Chương 2: Hệ thức lượng trong tam giác - giúp học sinh hiểu rõ về các định lí lượng trong tam giác và áp dụng vào việc giải các bài tập liên quan. Chương 3: Tọa độ trong không gian 2 chiều - cung cấp kiến thức về tọa độ trong mặt phẳng và cách sử dụng để giải các bài toán. Chương 4: Hình học không gian cổ điển - giới thiệu về các khái niệm cơ bản trong hình học không gian và cách áp dụng vào các bài tập thực tế. Chương 5: Tọa độ trong không gian 3 chiều - là phần mở rộng với tọa độ 3 chiều, giúp học sinh hiểu rõ hơn về không gian 3 chiều và cách sử dụng tọa độ trong giải các bài toán. Với cấu trúc chặt chẽ và dễ hiểu, cuốn sổ tay hình học này sẽ là người bạn đồng hành đắc lực giúp học sinh ôn tập và nắm vững kiến thức trước kì thi sắp tới.