Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 11 lần 2 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc

Vừa qua, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng Toán 11 lần thứ hai năm học 2018 – 2019, kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề thi KSCL Toán 11 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc mã đề 002 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 11 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Trên mặt phẳng có 2017 đường thẳng song song với nhau và 2018 đường thẳng song song khác cùng cắt nhóm 2017 đường thẳng đó. Số hình bình hành nhiều nhất có thể được tạo thành có đỉnh là các giao điểm nói trên bằng? [ads] + Trong các mệnh đều sau, mệnh đề nào sai? A. Các mặt bên của hình chóp cụt là các hình thang cân. B. Các mặt bên của hình chóp cụt là các hình thang. C. Đường thẳng chứa các cạnh bên của hình chóp cụt đồng quy tại một điểm. D. Trong hình chóp cụt thì hai đáy là hai đa giác có các cạnh tương ứng song song và các tỉ số các cặp cạnh tương ứng bằng nhau. + Cho bốn số a, b, c, d theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng 148/9, đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T = a – b + c – d.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 11 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 11 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng môn Toán lớp 11 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 11 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình chóp S.ABCD có BC AD BC AD AB b 2 1. Tam giác SAD đều. Mặt phẳng (P) đi qua điểm M trên cạnh AB và song song với các đường thẳng SA và BC, đồng thời cắt CD, SC, SB theo thứ tự tại N, P, Q. Đặt AM x x b 0. Gọi S x là diện tích của tứ giác MNPQ. Khi đó S x lớn nhất bằng? + Cho tứ diện ABCD có M, N lần lượt là trung điểm của BC và CD. Gọi K là điểm tùy ý thuộc miền trong tam giác ABD. Giao tuyến của (KMN) và (ABD) có tính chất là: A. nằm trong mặt phẳng (ACD) B. Song song với BD C. Cắt cạnh BD D. Cắt cạnh AC. + Cho hàm số 2 y f x ax bx c a 0 có đồ thị như hình vẽ bên. Hỏi phương trình 2 a f cosx b f cosx c có bao nhiêu nghiệm trong khoảng 7 2 2 π π? File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán lớp 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán lớp 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán lớp 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán lớp 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.