Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Kỳ Anh - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 19 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Cho phương trình 2 2 x m xm m 2 1 30 (m là tham số). Tìm m để phương trình có 2 nghiệm thỏa mãn: 1 2 12 x x 22. Cho tam giác ABC có góc B và góc C đều nhọn. Biết: AC 8cm 1 2 2 3 SinACB SinABC. Kẻ đường cao AH. a) Tính độ dài các đoạn thẳng AH; AB? b) Tính diện tích tam giác ABC? + Dịp cuối năm, Trường Giang Đồng tổ chức cho học sinh lớp 9 tham quan trải nghiệm tại Công ty TNHH Gang thép Hưng nghiệp formosa Hà Tĩnh. Ban đầu đoàn có 120 người đăng ký tham gia nên nhà trường dự định thuê một số xe ô tô khách nhất định để chở đoàn sao cho số người ngồi trên các xe bằng nhau. Khi xuất phát, có thêm 66 học sinh xin đăng ký tham gia cùng đoàn nên nhà trường phải thuê thêm 2 xe nữa và mỗi xe phải ghép thêm 1 người so với ban đầu để số người ngồi trên các xe bằng nhau. Hỏi số xe trường dự định thuê ban đầu? + Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của AO và BC. Vẽ đường kính BD của đường tròn (O). AD cắt đường tròn (O) tại điểm thứ hai ở F. a) Chứng minh các tứ giác ABOC, ABEF nội tiếp. b) Chứng minh EFD BDC. c) Kẻ CH vuông góc với BD. Chứng minh rằng AD đi qua trung điểm của CH.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Tiền Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Tiền Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 150km. Một xe máy khởi hành từ A đến B, cùng lúc đó một ôtô cũng khởi hành từ B đến A với vận tốc lớn hơn vận tốc của xe máy là 10km/h. Ôtô đến A được 30 phút thì xe máy cũng đến B. Tính vận tốc của mỗi xe. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB, N là điểm bất kỳ thuộc cung MB (N khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tâm O lần lượt tại C và D [ads] 1. Tính số đo góc ACB 2. Chứng minh tứ giác MNDC nội tiếp trong một đường tròn 3. Chứng minh AM.AC = AN.AD = 4R^2 + Cho hình nón có đường sinh bằng 26cm, diện tích xung quanh là 260pi cm2. Tính bán kính đáy và thể tích của hình nón.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, có đáp án và lời giải chi tiết.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – Thừa Thiên Huế gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB [ads] a) Chứng minh tứ giác MAIB nội tiếp b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai vòi nước cùng chảy vào một bể không có nước thì sau 5 giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất chảy trong 2 giờ rồi đóng lại, sau đó mở vòi thứ hai chảy trong 1 giờ thì ta được 1/4 bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O) và D là hình chiếu vuông góc của B trên AO sao cho D nằm giữa A và O. Gọi M là trung điểm BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với đường tròn (O), H là giao điểm của BF và AD. Chứng minh rằng: [ads] a) Tứ giác BDOM nội tiếp và góc MOD + góc NAE = 180 độ b) DF song song với CE, từ đó suy ra NE.NF = NC.ND c) CA là tia phân giác của góc BCE. d) HN vuông góc với AB + Một cốc nước có dạng hình trụ có bán kính đáy bằng 3 cm, chiều cao bằng 12cm và chứa một lượng nước cao 10 cm. Người ta thả từ từ 3 viên bi làm bằng thủy tinh có cùng đường kính bằng 2 cm vào cốc nước. Hỏi mực nước trong cốc lúc này cao bao nhiêu?