Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Sơn La

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS năm 2022 - 2023 tại Sơn La Đề thi học sinh giỏi Toán THCS năm 2022 - 2023 tại Sơn La Chào các thầy cô giáo và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán trung học cơ sở năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 11 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi sau: Trong mặt phẳng tọa độ Oxy, đường thẳng (d) có phương trình y = 2x - a^2 và parabol (P) có phương trình y = ax^2 (a > 0). Hãy tìm a sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B và chứng minh rằng A và B nằm bên phải trục tung. Gọi xA, xB là hoành độ của A và B. Tìm giá trị nhỏ nhất của biểu thức: T = 4/(xA + xB) + 1/(xA*xB). Chứng minh rằng tam giác ADE đồng dạng với tam giác ABC trong tam giác nhọn nội tiếp đường tròn (O) có đường cao BD và CE. Tia AO cắt BC tại M và giao cung nhỏ BC tại N. Tia BO cắt AC tại P, tia CO cắt AB tại F. Chứng minh rằng DE // SR và AN là tia phân giác của góc SAR trong tam giác ADE. Chứng minh rằng MB*MC/MA^2 + PC*PA/PB^2 + FA*FB/FC^2 = 1. Xét 100 số tự nhiên liên tiếp từ 1 đến 100. Gọi A là số thu được bằng cách sắp một cách tùy ý 100 số đó thành một dãy, B là số thu được bằng cách đặt một cách tùy ý các dấu cộng vào giữa các chữ số của A. Chứng minh rằng cả A và B đều không chia hết cho 2046. Hy vọng rằng các bạn sẽ rèn luyện kỹ năng Toán của mình thông qua đề thi này. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 vòng 1 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m3 = 2p3, n3 = 5q3. Chứng minh rằng tổng m + n + p + q là một hợp số. + Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A’B’C’ có đường phân giác A’D’. Chứng minh rằng ABC đồng dạng A’B’C’. + Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hoàn Kiếm - Hà Nội (vòng 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội (vòng 1); kỳ thi được diễn ra vào ngày 06 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hoàn Kiếm – Hà Nội (vòng 1) : + Cho hình vuông ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OD. Trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng đi qua F và vuông góc với FO, cắt BD tại S. Kẻ FH vuông góc với BD tại H. 1) Chứng minh BFD = 90° và SD.SB= SH.SO. 2) Chứng minh FC là tia phân giác của góc BFD. 3) Kẻ ET vuông góc với BF tại T. Chứng minh: ST vuông góc với CF. + Tìm các số nguyên tố a, b sao cho a2 + 3ab + b2 là một số chính phương. + Cho 2022 điểm trên mặt phẳng, sao cho khi ta chọn ra ba điểm bất kỳ trong số chúng, ta đều được ba đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh tất cả các điểm này đều không nằm ngoài một tam giác có diện tích nhỏ hơn 4.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương (vòng 2); kỳ thi được diễn ra vào ngày 01 tháng 10 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT huyện Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT huyện Phúc Thọ – Hà Nội : + Cho x, y là hai số dương thoả mãn: (x + y)2 >= 6 + 2xy. Tìm giá trị nhỏ nhất của biểu thức Q = x4 – 2×2 + y2 + 6/x2 + 8/y2. + Cho M = (x2 + 2yz – 1)(y2 + 2xz – 1)(1 – z2 – 2xy). Trong đó x, y, z là các số hữu tỉ thỏa mãn xy + yz + zx = 1. Chứng minh rằng: M là một số hữu tỉ. + Cho tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia Cx vuông góc AC cắt IF tại E. a) Cho AB = 20cm, HC = 9cm. Tính độ dài AH và AC. b) Chứng minh rằng: HA.HI = HB.HE. c) Chứng minh AE vuông góc với BI.