Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề tuyển sinh lớp 10 môn Toán sở GDĐT Hà Nội (từ 1998 đến 2020)

Tài liệu gồm 68 trang, được tổng hợp và biên soạn bởi thầy Trịnh Văn Luân, tuyển tập 21 đề tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nội (từ năm 1998 đến năm 2020), có đáp án và lời giải chi tiết. Đề số 1. Đề thi vào 10 thành phố Hà Nội năm 1998. Đề số 2. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 1999-2000. Đề số 3. Đề thi vào 10 thành phố Hà Nội năm 2000. Đề số 4. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2001-2002. Đề số 5. Đề thi vào 10 thành phố Hà Nội năm 2002. Đề số 6. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2003-2004. Đề số 7. Đề thi Toán vào lớp 10 năm học 2004-2005, Hà Nội. Đề số 8. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2006. Đề số 9. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2007. Đề số 10. Đề thi vào 10, Sở GD&ĐT Hà Nội năm 2008. Đề số 11. Đề thi vào lớp 10, Sở GDHN, năm 2009 – 2010. Đề số 12. Đề thi vào lớp 10 – TP Hà Nội năm 2010. Đề số 13. Đề tuyển sinh vào 10 SGD Hà Nội 2011. Đề số 14. Đề thi vào lớp 10, SGD Hà Nội 2012. Đề số 15. Đề thi vào lớp 10, SGD Hà Nội 2013. Đề số 16. Đề thi vào lớp 10, SGD Hà Nội 2014. Đề số 17. Đề thi vào lớp 10, SGD Hà Nội 2015. Đề số 18. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2016-2017. Đề số 19. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2017-2018. Đề số 20. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2018-2019. Đề số 21. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2019-2020.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).