Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khái niệm biểu thức đại số, giá trị của một biểu thức đại số
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề khái niệm biểu thức đại số, giá trị của một biểu thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Trình bày được khái niệm biểu thức đại số. + Trình bày được cách tính giá trị của một biểu thức đại số. Kĩ năng: + Viết được biểu thức đại số theo yêu cầu. + Tính được giá trị của một biểu thức đại số và trình bày được lời giải. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Viết các biểu thức đại số theo cách diễn đạt cho trước. Dạng 2: Tính giá trị biểu thức đại số. Dạng 3: Tính giá trị biểu thức khi biết mối quan hệ giữa các biến. Dạng 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức.
Chuyên đề số trung bình cộng
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề số trung bình cộng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 3: Thống kê. Mục tiêu : Kiến thức: + Vận dụng được công thức tính trung bình cộng từ bảng đã lập, biết sử dụng số trung bình cộng để làm đại diện cho một dấu hiệu trong một số trường hợp và để so sánh khi tìm hiểu những dấu hiệu cùng loại. + Xác định được mốt của dấu hiệu và hiểu được ý nghĩa của mốt. Kĩ năng: + Tính được số trung bình cộng và mốt thông qua công thức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1. Tính số trung bình cộng của dấu hiệu. Dạng 2. Mốt của dấu hiệu.
Chuyên đề biểu đồ
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề biểu đồ, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 3: Thống kê. Mục tiêu: Kiến thức: + Trình bày được ý nghĩa minh họa của biểu đồ về giá trị của dấu hiệu và tần số tương ứng. + Nhận biết được các dạng biểu đồ đoạn thẳng, biểu đồ hình chữ nhật, biểu đồ hình quạt. Kĩ năng: + Dựng được biểu đồ đoạn thẳng, hình chữ nhật từ bảng tần số và bảng ghi dãy số biến thiên theo thời gian. + Đọc được các biểu đồ. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1. Dựng biểu đồ đoạn thẳng, hình chữ nhật. Dạng 2. Đọc biểu đồ đơn giản.
Chuyên đề mặt phẳng tọa độ, đồ thị hàm số y ax (a khác 0)
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề mặt phẳng tọa độ, đồ thị hàm số y = ax (a khác 0), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 2: Hàm số và đồ thị. Mục tiêu : Kiến thức: + Nhận thấy được sự cần thiết phải dùng một cặp số để xác định vị trí của một điểm trên mặt phẳng. + Hiểu được mặt phẳng tọa độ, cách vẽ hệ trục tọa độ. + Nắm được cách xác định tọa độ một điểm trong mặt phẳng tọa độ. Hiểu được trên mặt phẳng tọa độ, mỗi điểm xác định một cặp số và ngược lại, mỗi cặp số xác định một điểm. + Hiểu được khái niệm đồ thị hàm số, nắm được dạng và cách vẽ của đồ thị hàm số y = ax (a khác 0). Kĩ năng: + Vẽ được hệ trục tọa độ, đọc được tọa độ của một điểm trên mặt phẳng tọa độ và biểu diễn được điểm trên mặt phẳng tọa độ khi biết tọa độ của nó. + Kiểm tra được điểm cho trước có thuộc đồ thị hàm số đã cho hay không? Dựa vào đồ thị hàm số, xác định giá trị của các đại lượng. + Vẽ thành thạo đồ thị của hàm số y = ax (a khác 0). I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Viết tọa độ của các điểm cho trước trên mặt phẳng tọa độ. Dạng 2: Biểu diễn các điểm có tọa độ cho trước trên mặt phẳng tọa độ. Dạng 3: Vẽ đồ thị hàm số y = ax (a khác 0). Dạng 4: Xét xem một điểm có thuộc đồ thị của một hàm số cho trước hay không? Dạng 5: Xác định hệ số a của đồ thị hàm số y = ax biết đồ thị hàm số đi qua điểm M. Dạng 6: Xác định các đại lượng và ý nghĩa của chúng dựa vào đồ thị hàm số cho trước.