Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1)

Nội dung Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Ngày 25 tháng 05 năm 2019, trường THPT chuyên Thái Bình, trực thuộc sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020. Đề thi chung được dành cho toàn bộ các thí sinh tham gia kỳ thi, đề thi gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Bài tuyển sinh Toán lớp 10 năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) chứa những câu hỏi thú vị và đa dạng. Một số điểm nổi bật trong đề bao gồm: 1. Bài toán về việc quyên góp sách của hai lớp 9A và 9B. Học sinh cần tính số học sinh mỗi lớp biết tổng số học sinh là 90 dựa trên số quyển sách mỗi lớp ủng hộ. 2. Bài toán về hai đường thẳng trên mặt phẳng tọa độ Oxy, yêu cầu tìm điều kiện để đường thẳng (d1) song song với (d2) và chứng minh một điểm cố định mà dường thẳng (d2) luôn đi qua với mọi giá trị của tham số m. 3. Bài toán về phương trình bậc hai và biểu thức có giá trị nhỏ nhất, học sinh cần tìm giá trị nhỏ nhất của biểu thức Q trong phạm vi các nghiệm của phương trình. Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) không chỉ đánh giá kiến thức của học sinh mà còn đề cao khả năng tư duy logic, suy luận và giải quyết vấn đề. Đây là cơ hội để thí sinh thể hiện năng lực và sự sáng tạo của mình trong việc giải quyết các bài toán phức tạp.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Sytu xin gửi đến các thầy cô và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cao Bằng. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không tính thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GD&ĐT Cao Bằng: Cho Parabol (P): y = mx^2 và đường thẳng (d): y = 2x - m^2 (với m > 0). Hãy tìm giá trị của m để (d) cắt (P) tại hai điểm A và B, và chứng minh rằng A và B nằm bên phải trục tung. Cho nửa đường tròn (O;R) có đường kính AB. Đường thẳng d tiếp xúc (O) tại B. Trên cung AB, chọn điểm M (M khác A và B). Tia AM cắt d tại C. I là trung điểm của AM, IO cắt d tại N. Hãy chứng minh rằng OBCI nội tiếp, AI.IC = IO.IN và E là hình chiếu của O trên AN. Cần chứng minh điều gì? Cho hệ phương trình với tham số m. Tìm giá trị nguyên của m để hệ phương trình có một nghiệm duy nhất (x;y) sao cho A = 3x - y là số nguyên. Nội dung đề thi truyền đạt thông điệp về tính logic, tư duy và khả năng giải quyet vấn đề của các thí sinh. Hãy chuẩn bị kỹ lưỡng và tự tin cho kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Chào đón quý thầy cô và các em học sinh lớp 9, mùa tuyển sinh năm nay đã đến. Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán, chúng tôi xin giới thiệu đề thi chính thức môn Toán của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Đề thi sẽ diễn ra vào ngày 18 tháng 06 năm 2022, và dưới đây là một số câu hỏi mẫu từ đề tuyển sinh: Phương trình của parabol (P) đi qua điểm M(3;3) và cắt đường thẳng (d): y = -1/2.x + m tại hai điểm A và B. Tìm phương trình của parabol (P) và giá trị của tham số m để điều này xảy ra. Chứng minh rằng nếu x1, x2, x3, x4 là nghiệm của hệ thức x2 + mx + 1 = 0 và x2 + nx + 1 = 0, thì áp dụng một quy tắc nhất định. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = x – y + 2 trong khi x và y thỏa mãn một đẳng thức cụ thể. Chứng minh các tính chất trong tam giác ABC nội tiếp đường tròn tâm O và chứng minh các quan hệ HE/HF = NB/NC, HE.MQ.HB = HF.MP.NC Hy vọng rằng đề thi này sẽ giúp các em tự tin và hiểu biết rõ hơn về kiến thức Toán cũng như chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao trong kỳ thi tuyển sinh!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau, được tổ chức vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau: - Cho Parabol (P): y = 3/2.x^2 và đường thẳng (d): y = 2mx + 1. a) Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên mặt phẳng Oxy và tìm tọa độ giao điểm của chúng. - Một xí nghiệp chế biến thủy sản dự kiến đóng 3,000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu, họ thực hiện đúng tiến độ, sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu, khiến họ hoàn thành sớm 1 ngày và vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đóng bao nhiêu hộp tôm xuất khẩu? - Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.
Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau. Kỳ thi diễn ra vào ngày 21 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau: Ngày của Cha, hay còn gọi là Father's Day, là dịp để con bày tỏ lòng biết ơn và hiếu thảo đối với cha. Để tỏ lòng biết ơn này, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834,700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng cho cha. Duy đã tính nhẩm và đến kết luận rằng nếu mua vào ngày không có khuyến mãi, anh ấy sẽ không đủ tiền để mua hai món hàng này. Bạn hãy xác định xem Duy có tính đúng không? Cho phương trình: x² + kx + 2 = 0 (k là tham số). Hãy tìm giá trị của k để phương trình có nghiệm kép, và tìm nghiệm kép đó. Sau đó, tìm giá trị của k để phương trình có hai nghiệm x₁, x₂ thỏa mãn. Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Từ đó, kết hợp với các thông tin đã cho, bài toán yêu cầu chúng ta chứng minh một số tính chất về các hình học liên quan. Hy vọng rằng đề thi và các câu hỏi trên sẽ giúp quý vị và các em học sinh lớp 9 rèn luyện kỹ năng Toán một cách hiệu quả và tự tin cho kỳ thi sắp tới. Chúc quý vị thành công!