Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Tài liệu gồm 56 trang được biên soạn bởi tác giả Trịnh Bình giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số, tài liệu phù hợp với học sinh lớp 6 muốn tìm hiểu chuyên sâu và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Các dạng toán được đề cập trong tài liệu chuyên đề quan hệ chia hết trên tập hợp số: Dạng toán 1 : Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Đây là dạng toán cơ bản thường gặp khi chúng ta mới bắt đầu học chứng minh các bài toán chia hết. Sử dụng các tính chất cơ bản như: tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Chúng ta vận dụng linh hoạt các tích chất cơ bản này để giải các bài toán chứng  minh chia hết về tích các số nguyên liên tiếp. Dạng toán 2 : Phân tích thành nhân tử. Để chứng minh A(x) chia hết cho p ta phân thích A(x) = D(x).p, còn nếu không thể đưa ra phân tích như vậy ta có thể viết p = kq. + Nếu (k;q) = 1, ta chứng minh A(x) chia hết cho k và q. + Nếu (k;q) khác 1, ta viết A(x) = B(x).C(x) rồi chứng minh B(x) chia hết cho k và C(x) chia hết cho q. Dạng toán 3 : Sử dụng phương pháp tách tổng. Để chứng minh A(x) chia hết cho p ta biết đổi A(x) thành tổng các hạng tử rồi chứng minh mỗi hạng tử chia hết cho p. Dạng toán 4 : Sử dụng hằng đẳng thức. [ads] Dạng toán 5 : Sử dụng phương pháp xét số dư. Để chứng minh A(n) chia hết cho p ta xét số n có dạng n = kp + r với r thuộc {0; 1; 2 … p – 1}. Dạng toán 6 : Sử dụng phương pháp phản chứng. Để chứng minh A(x) không chia hết cho n, ta giả sử A(x) chia hết cho n sau đó dùng lập luận để chỉ ra mâu thuẩn để chỉ ra điều giả sử là sai. Dạng toán 7 : Sử dụng phương pháp quy nạp. Để kiểm tra mệnh đề đúng với mọi số tự nhiên n ≥ p ta làm như sau: + Kiểm tra mệnh đề đúng với n = p. + Giả sử mệnh đề đúng mới n = k chứng minh mệnh đề đúng với n = k + 1. Dạng toán 8 : Sử dụng nguyên lý Dirichlet. Áp dụng nguyên lý Dirichle vào bài toán chia hết như sau: “Trong m = kn + 1 số có ít nhất n + 1 số chia hết cho k có cùng số dư”. Dạng toán 9 : Xét đồng dư. Sử dụng định nghĩa và các tính chất của đồng dư thức để giải bài toán chia hết. Dạng toán 10 : Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ. Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ để giải toán. Dạng toán 11 : Các bài toán quan hệ chia hết với đa thức. Dạng toán 12 : Tìm điều kiện biến để chia hết.

Nguồn: toanmath.com

Đọc Sách

Một số phương pháp chứng minh bất đẳng thức
Nội dung Một số phương pháp chứng minh bất đẳng thức Bản PDF - Nội dung bài viết 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức Tron trong tài liệu có 78 trang, chúng tôi sẽ hướng dẫn bạn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. Chúng tôi sẽ giới thiệu và đi vào chi tiết một số phương pháp sau: I. Bất đẳng thức Côsi Dạng 1: Chúng ta sẽ học cách chuyển từ dạng tổng sang tích. Dạng 2: Biết cách chuyển dạng tích sang tổng, nhân bằng số thích hợp. Dạng 3: Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. Dạng 4: Ghép cặp đôi để chứng minh bất đẳng thức. Dạng 5: Dự đoán kết quả và tách thích hợp để giải. Dạng 6: Kết hợp đặt ẩn phụ và dự đoán kết quả trong bài toán. Dạng 7: Tìm lại điều kiện của ẩn để áp dụng bất đẳng thức Côsi. II. Bất đẳng thức Bunhia Chúng ta sẽ tìm hiểu về các phương pháp chứng minh bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương Dạng 1: Biến đổi bài toán về dạng bình phương để chứng minh bất đẳng thức. Dạng 2: Tạo ra bậc hai bằng cách nhân hai bậc một. Dạng 3: Sử dụng phương pháp tạo ra ab + bc + ca để chứng minh. Dạng 4: Sử dụng tính chất trong ba số bất kỳ luôn tồn tại hai số có tích không âm để chứng minh. Dạng 5: Sử dụng tính chất của một số bị chặn từ 0 đến 1 để chứng minh bất đẳng thức. Dạng 6: Dự đoán kết quả rồi xét hiệu để chứng minh bất đẳng thức. Hệ thống bài tập sẽ sử dụng trong các chủ đề sau: Bất đẳng thức Côsi Bất đẳng thức Bunhia Phương pháp biến đổi tương đương
Các bài toán sử dụng nguyên lý bất biến trong giải toán
Nội dung Các bài toán sử dụng nguyên lý bất biến trong giải toán Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý bất biến trong giải toán Các ứng dụng của nguyên lý bất biến trong giải toán Bản tài liệu này bao gồm 16 trang và được trích từ cuốn sách nổi tiếng về việc áp dụng nguyên lý bất biến trong giải toán. Nguyên lý bất biến là một trong những công cụ quan trọng để giải quyết các bài toán phức tạp trong toán học. Bằng cách áp dụng nguyên lý này, người ta có thể tạo ra những phương pháp giải quyết hiệu quả, tiết kiệm thời gian và nâng cao khả năng suy luận của mình.
Các bài toán sử dụng nguyên lý cực hạn
Nội dung Các bài toán sử dụng nguyên lý cực hạn Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý cực hạn trong giải bài toán Các ứng dụng của nguyên lý cực hạn trong giải bài toán Tài liệu bao gồm 20 trang và được trích dẫn từ một cuốn sách nổi tiếng về nguyên lý cực hạn. Trong cuốn sách, nguyên lý cực hạn được áp dụng để giải quyết các bài toán phức tạp trong đời sống và công việc hàng ngày. Việc áp dụng nguyên lý cực hạn trong giải quyết bài toán giúp tối ưu hóa kết quả và đưa ra những giải pháp hiệu quả nhất.
Các bài toán về nguyên lý Dirichlet trong số học
Nội dung Các bài toán về nguyên lý Dirichlet trong số học Bản PDF - Nội dung bài viết Các bài toán về nguyên lý Dirichlet trong số học Các bài toán về nguyên lý Dirichlet trong số học Được trích đoạn từ cuốn sách "Các bài toán về nguyên lý Dirichlet trong số học", tài liệu này bao gồm 26 trang các bài toán liên quan đến nguyên lý Dirichlet trong số học. Những bài toán này thường liên quan đến việc tìm kiếm nguyên hàm của một hàm số với điều kiện ban đầu cho trước, và có ứng dụng rất rộng rãi trong lĩnh vực toán học, khoa học máy tính và các ngành liên quan khác. Cuốn sách này cung cấp cái nhìn tổng quan về nguyên lý Dirichlet và giúp độc giả hiểu rõ hơn về cách áp dụng nguyên lý này vào các bài toán cụ thể.