Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Tài liệu gồm 56 trang được biên soạn bởi tác giả Trịnh Bình giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số, tài liệu phù hợp với học sinh lớp 6 muốn tìm hiểu chuyên sâu và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Các dạng toán được đề cập trong tài liệu chuyên đề quan hệ chia hết trên tập hợp số: Dạng toán 1 : Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Đây là dạng toán cơ bản thường gặp khi chúng ta mới bắt đầu học chứng minh các bài toán chia hết. Sử dụng các tính chất cơ bản như: tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Chúng ta vận dụng linh hoạt các tích chất cơ bản này để giải các bài toán chứng  minh chia hết về tích các số nguyên liên tiếp. Dạng toán 2 : Phân tích thành nhân tử. Để chứng minh A(x) chia hết cho p ta phân thích A(x) = D(x).p, còn nếu không thể đưa ra phân tích như vậy ta có thể viết p = kq. + Nếu (k;q) = 1, ta chứng minh A(x) chia hết cho k và q. + Nếu (k;q) khác 1, ta viết A(x) = B(x).C(x) rồi chứng minh B(x) chia hết cho k và C(x) chia hết cho q. Dạng toán 3 : Sử dụng phương pháp tách tổng. Để chứng minh A(x) chia hết cho p ta biết đổi A(x) thành tổng các hạng tử rồi chứng minh mỗi hạng tử chia hết cho p. Dạng toán 4 : Sử dụng hằng đẳng thức. [ads] Dạng toán 5 : Sử dụng phương pháp xét số dư. Để chứng minh A(n) chia hết cho p ta xét số n có dạng n = kp + r với r thuộc {0; 1; 2 … p – 1}. Dạng toán 6 : Sử dụng phương pháp phản chứng. Để chứng minh A(x) không chia hết cho n, ta giả sử A(x) chia hết cho n sau đó dùng lập luận để chỉ ra mâu thuẩn để chỉ ra điều giả sử là sai. Dạng toán 7 : Sử dụng phương pháp quy nạp. Để kiểm tra mệnh đề đúng với mọi số tự nhiên n ≥ p ta làm như sau: + Kiểm tra mệnh đề đúng với n = p. + Giả sử mệnh đề đúng mới n = k chứng minh mệnh đề đúng với n = k + 1. Dạng toán 8 : Sử dụng nguyên lý Dirichlet. Áp dụng nguyên lý Dirichle vào bài toán chia hết như sau: “Trong m = kn + 1 số có ít nhất n + 1 số chia hết cho k có cùng số dư”. Dạng toán 9 : Xét đồng dư. Sử dụng định nghĩa và các tính chất của đồng dư thức để giải bài toán chia hết. Dạng toán 10 : Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ. Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ để giải toán. Dạng toán 11 : Các bài toán quan hệ chia hết với đa thức. Dạng toán 12 : Tìm điều kiện biến để chia hết.

Nguồn: toanmath.com

Đọc Sách

Các bài toán chứng minh ba điểm thẳng hàng
Tài liệu gồm 21 trang, hướng dẫn phương pháp giải bài toán chứng minh ba điểm thẳng hàng, đây là dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán. 1. Phương pháp chứng minh ba điểm thẳng hàng Phương pháp 1. Chứng minh điểm A thuộc đoạn thẳng BC. Phương pháp 2. Chứng minh qua 3 điểm xác định một góc bẹt (180 độ). Phương pháp 3. Chứng minh hai góc ở vị trí đối đỉnh mà bằng nhau. Phương pháp 4. Chứng minh 3 điểm xác định được hai đường thẳng cùng vuông góc hay cùng song song với một đường thẳng thứ 3 (tiên đề Ơclit). Phương pháp 5. Dùng tính chất đường trung trực: chứng minh 3 điểm đó cùng cách đều hai đầu đoạn thẳng. Phương pháp 6. Dùng tính chất tia phân giác: chứng minh 3 điểm đó cùng cách đều hai cạnh của một góc. Phương pháp 7. Sử dụng tính chất đồng quy của các đường: trung tuyến, phân giác, đường cao trong tam giác. Phương pháp 8. Sử dụng tính chất đường chéo của các tứ giác đặc biệt: hình vuông, hình chữ nhật, hình thoi, hình bình hành, hình thang. Phương pháp 9. Sử dụng tính chất tâm và đường kính của đường tròn. Phương pháp 10. Sử dụng tính chất hai đường tròn tiếp xúc nhau. 2. Ví dụ minh họa
Các bài toán chứng minh đẳng thức hình học
Với bài toán hình học trong đề thi tuyển sinh vào lớp 10 môn Toán, sẽ có những yêu cầu chứng minh hai đoạn thẳng bằng nhau hoặc các đoạn thẳng tỷ lệ … mà ta gọi chung là đẳng thức hình học. Tài liệu dưới đây sẽ hệ thống một số biện pháp chứng minh đẳng thức hình học. Dạng toán đẳng thức hình học là một dạng toán cũng không khó nhưng nó đòi hỏi người giải phải có cái nhìn nhanh (tiết kiệm thời gian) và chuẩn (giải đúng kiếm điểm), xác định đúng phương pháp vô cùng quan trọng. Chính vì vậy việc tự luyện giải nhiều bài toán hình học sẽ giúp cho các em có kỹ năng giải. PHẦN 1 . LÝ THUYẾT CHỨNG MINH ĐẲNG THỨC HÌNH HỌC. A. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU. Phương pháp 1: Hai tam giác bằng nhau. Phương pháp 2: Sử dụng tính chất của các hình đặc biệt. 1. Hai cạnh bên của tam giác cân, tam giác đều. 2. Sử dụng tính chất về cạnh và đường chéo của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật, hình vuông, hình thoi. Phương pháp 3: Sử dụng tính chất của các đường đặc biệt, điểm đặc biệt. 1. Sử dụng tính chất đường trung tuyến (đường thẳng đi qua trọng tâm tam giác), đường trung tuyến của tam giác vuông, đường trung bình trong tam giác, các đường đồng quy trong tam giác đặc biệt. 2. Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. 3. Khoảng cách từ một điểm trên đường trung trực của một đoạn thẳng đến hai đầu đoạn thẳng. 4. Sử dụng tính chất trung điểm. 5. Hình chiếu của hai đường xiên bằng nhau và ngược lại. Phương pháp 4: Sử dụng các tính chất liên quan đến đường tròn. 1. Sử dụng tính chất hai dây cách đều tâm trong đường tròn. 2. Sử dụng tính chất hai tiếp tuyến giao nhau trong đường tròn. 3. Sử dụng quan hệ giữa cung và dây cung trong một đường tròn. Phương pháp 5: Sử dụng tỉ số, đoạn thẳng trung gian. 1. Dùng tính chất bắc cầu: Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba. 2. Có cùng độ dài (cùng số đo) hoặc cùng nghiệm đúng một hệ thức. 3. Đường thẳng song song cách đều. 4. Sử dụng tính chất của các đẳng thức, hai phân số bằng nhau. 5. Sử dụng kiến thức về diện tích. 6. Sử dụng bình phương của chúng bằng nhau (có thể sử dụng định lí Pitago, tam giác đồng dạng, hệ thức lượng trong tam giác, trong đường tròn để đưa về bình phương của chúng bằng nhau). B. CHỨNG MINH HAI ĐOẠN THẲNG TỈ LỆ. 1. Tính chất trung điểm của đoạn thẳng. 2. Tính chất ba đường trung tuyến trong tam giác. 3. Đường trung bình. 4. Định lý Talet. 5. Tính chất đường phân giác của tam giác. 6. Các trường hợp đồng dạng của tam giác. 7. Hệ thức lượng trong tam giác vuông. 8. Tỉ số lượng giác của góc nhọn. PHẦN 2 . BÀI TẬP CHỨNG MINH ĐẲNG THỨC HÌNH HỌC PHẲNG.
Phương pháp giải phương trình nghiệm nguyên
Tài liệu gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên, đây là dạng toán thường xuất hiện trong các đề thi học sinh giỏi Toán bậc THCS. A. KIẾN THỨC CẦN NHỚ 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, tất cả các hệ số của phương trình đều là số nguyên. Các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải của một số dạng. Trong chuyên đề này được giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên rất đa dạng, đòi hỏi học sinh phân tích, dự đoán, đối chiếu và tư duy sáng tạo, lôgic để tìm nghiệm. B. CÁC DẠNG BÀI TẬP Dạng 1: Phương pháp đưa về phương trình ước số. Dạng 2: Phương pháp sử dụng tính chất chia hết. Dạng 3: Phương pháp xét số dư từng vế. Dạng 4: Phương pháp đưa về dạng tổng. Dạng 5: Phương pháp sử dụng bất đẳng thức. Dạng 6: Phương pháp đánh giá. Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. BÀI TẬP TỰ LUYỆN
Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng
Tài liệu gồm 139 trang, tuyển chọn và hướng dẫn giải các bài toán liên quan đến việc chứng minh đẳng thức, bất đẳng thức hình học phẳng, giúp học sinh học tốt chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. Bài toán 1. Sử dụng định lí Pythagore để chứng minh đẳng thức, bất đẳng thức hình học. Bài toán 2. Sử dụng tam giác bằng nhau để chứng minh đẳng thức hình học. Bài toán 3. Sử dụng quan hệ góc và cạnh đối diện, quan hệ đường vuông góc và đường xiên, quan hệ đường xiên và hình chiếu, bất đẳng thức tam giác. Bài toán 4. Sử dụng định lí Thales (Ta-Lét) và tính chất đường phân giác của tam giác để chứng minh đẳng thức hình học. Bài toán 5. Sử dụng phương pháp diện tích để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 6. Sử dụng phương pháp về hình bình hành để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 7. Sử dụng tam giác đồng dạng để chứng minh đẳng thức, bất đẳng thức hình học. Bài toán 8. Sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 9. Sử dụng định lí Van Aubel để chứng minh đẳng thức và bất đẳng thức hình học. Một số bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng trích trong các đề thi tuyển sinh vào lớp 10 môn Toán.