Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 trường PTNK - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 10 câu trắc nghiệm (02 điểm) và 04 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 trường PTNK – TP HCM : + Học sinh kẻ bảng sau vào giấy làm bài thi và trả lời các câu hỏi trắc nghiệm bằng cách: – Ghi 01 ký tự A hoặc B hoặc C hoặc D vào ô trả lời tương ứng với đáp án của câu hỏi. – Bỏ câu trả lời (nếu có) bằng cách gạch chéo ký tự (A hoặc B hoặc C hoặc D) đã ghi và ghi lại 01 ký tự (A hoặc B hoặc C hoặc D) vào ô trả lời tương ứng với đáp án của câu hỏi. + Hình vuông ABCD và hình chữ nhật MNPQ có tổng chu vi bằng 42(cm) và tổng diện tích bằng 55(cm2) và AB = MN. Tính độ dài AC khi MN là chiều rộng của hình chữ nhật MNPQ. + Sẻ Project là một dự án phi lợi nhuận của khối Văn trường Phổ Thông Năng Khiếu – ĐHQG TP. HCM, được thành lập từ năm 2018. Mỗi năm Sẻ đều tổ chức một chương trình thiện nguyện nhằm hỗ trợ cộng đồng. Gọi T2019, T2020, T2021 lần lượt là số tiền Sẻ quyên góp được trong các năm 2019, 2020, 2021. Ngoài các hiện vật, T2020 tăng 40% so với T2019 và bằng 7/10.T2021. Năm 2022, Sẻ đã đóng góp cho thư viện cộng đồng EVG ở xã Phong Thạnh, huyện Cầu Kè, tỉnh Trà Vinh (Phong Thạnh là một trong những xã nghèo, có tỷ lệ học sinh bỏ học cao ở các cấp) số tiền bằng 3 lần T2021 và so với T2019 thì tăng 50 triệu đồng. Tìm T2020.

Nguồn: toanmath.com

Đọc Sách

Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 05 năm 2022. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định : + Từ 2022 số nguyên dương đầu tiên là 1; 2; 3; …; 2022, người ta chọn ra n số phân biệt sao cho cứ hai số bất kì được chọn ra đều có hiệu không là ước của tổng hai số đó. Chứng minh rằng n ≤ 674. + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA và MB với đường tròn (O) (A và B là các tiếp điểm). Gọi D là điểm trên cung lớn AB của đường tròn (O;R) sao cho AD // MB và C là giao điểm thứ hai của đường thẳng MD với đường tròn (O;R). 1. Gọi H là giao điểm của các đường thẳng OM và AB. Chứng minh rằng MH.MO = MC.MD và tứ giác OHCD nội tiếp. 2. Gọi G là trọng tâm tam giác MAB. Chứng minh rằng ba điểm A C G thẳng hàng. 3. Giả sử OM = 3R. Kẻ đường kính BK của đường tròn (O;R). Gọi I là giao điểm của các đường thẳng MK và AB. Tính giá trị biểu thức T. + Cho p là số nguyên tố có dạng 4k + 3 (k thuộc N). Chứng minh rằng nếu a b thuộc Z thoả mãn a + b chia hết cho P thì a : p và b : p. Từ đó suy ra phương trình x2 + 4x + 9y2 = 58 không có nghiệm nguyên.
Đề vào lớp 10 môn Toán (chung) năm 2022 - 2023 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; Đề 1 dành cho học sinh thi vào các lớp chuyên tự nhiên và Đề 2 dành cho học sinh thi vào các lớp chuyên xã hội; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 05 năm 2022. Trích dẫn đề vào lớp 10 môn Toán (chung) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Gọi I là trung điểm của BC và D là điểm đối xứng với A qua OM, giao điểm của AD và OM là H. 1) Chứng minh tứ giác MAOI nội tiếp và MD2 = MB.MC. 2) Giả sử tiếp tuyến tại B của đường tròn (O) cắt OI tại F. Chứng minh tam giác OMI và tam giác OFH đồng dạng từ đó suy ra ba điểm A, D, F thẳng hàng. 3) Chứng minh rằng tứ giác BHOC nội tiếp và HB.MC = MB.HC. + Tìm toạ độ điểm M là giao điểm của đường thẳng y = 2x + 4 với trục Ox. + Biết hình tròn có chu vi là 47 cm. Tính diện tích hình tròn đó.
Đề khảo sát Toán thi vào 10 năm 2022 - 2023 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán thi vào 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10 000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật và tăng giờ làm nên mỗi ngày đội sản xuất được thêm 200 khẩu trang. Vì vậy, không những đã làm vượt mức kế hoạch 800 khẩu trang mà còn hoàn thành công việc sớm hơn 1 ngày so với dự định. Tính số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. + Một thùng nước bằng tôn có dạng hình trụ với bán kính đáy là 0,2m và chiều cao 0,4m. Hỏi thùng nước này đựng đầy được bao nhiêu lít nước ? (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). + Cho đường tròn O R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm I thuộc đoạn thẳng OB I O B. Gọi E là giao điểm của đường thẳng CI với O E C H là giao điểm của hai đoạn thẳng AE và CD. 1) Chứng minh tứ giác OHEB là tứ giác nội tiếp. 2) Chứng minh AH AE R2 2. 3) Nếu I là trung điểm của đoạn thẳng OB. Tính tỉ số OH OA. 4) Tìm vị trí của I trên đoạn thẳng OB sao cho tích EAEB EC ED đạt giá trị lớn nhất.
Đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi môn Toán định hướng tuyển sinh vào lớp 10 năm học 2021 – 2022 lần 2 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 16 tháng 04 năm 2022. Trích dẫn đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh – Thanh Hóa : + Gọi P là một điểm nằm trên đoạn thẳng MN (P khác M, P khác N). Trên nửa mặt phẳng có bờ là đường thẳng MN, kẻ các tia Mx, Ny cùng vuông góc với MN. Trên tia Mx lấy điểm I (I khác M). Đường thẳng vuông góc với PI tại P cắt tia Ny tại K; đường tròn đường kính IP cắt IK tại Q. 1. Chứng minh rằng: al Tứ giác PQKN nội tiếp được trong một đường tròn. Xác định tâm của đường tròn đó. b/ Tam giác MNQ là tam giác vuông. + Cho M, I, N cố định. Tìm vị trí của điểm P trên đoạn thẳng MN sao cho tứ giác MNKI có diện tích lớn nhất. + Cho x, y, z là ba số thực dương tuỳ ý thoả mãn: x + y + z = 2. Tìm giá trị lớn nhất của biểu thức: P.