Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề thứ tự trong tập hợp các số tự nhiên

Tài liệu gồm 11 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự trong tập hợp các số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. Bài tập trắc nghiệm. B. Bài tập tự luận Dạng 1 : Tìm số tự nhiên liền trước, liền sau. Tìm số tự nhiên thỏa mãn điều kiện cho trước. Trên trục số nằm ngang, chiều mũi tên đi từ trái sang phải, điểm bên trái biểu diễn số nhỏ, điểm bên phải biểu diễn số lớn. Vì hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị, để tìm số tự nhiên liền sau của số tự nhiên a ta tính a 1; tìm số tự nhiên liền trước của số tự nhiên a a 0 ta tính a 1. Số 0 không có số tự nhiên liền trước. Ba số tự nhiên liên tiếp tăng dần có dạng: a a 1 a 2 hoặc a 1 a a 1. Dạng 2 : Viết tập hợp các số tự nhiên; biểu diễn số tự nhiên trên tia số. + Viết tập hợp các số tự nhiên không vượt quá yêu cầu của đề bài và biểu diễn tập hợp trên tia số. + Hai cách biểu diễn tập hợp là liệt kê phần tử và chỉ ra tính chất đặc trưng của tập hợp. + Số các số tự nhiên liên tiếp từ a đến b là b a 1. + Số các số lẻ (chẵn) tự nhiên liên tiếp từ a đến b là 2 1 b a. Dạng 3 : So sánh hai số tự nhiên. + Trong hai số tự nhiên khác nhau, luôn có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì trên tia số nằm ngang điểm a nằm bên trái điểm b. Ta viết a b hoặc b a. Ta còn nói điểm a nằm trước điểm b hoặc điểm b nằm sau điểm a. Trên tia số: Số ở gần 0 hơn là số bé hơn (chẳng hạn: 2 5 …) số ở xa gốc 0 hơn là số lớn hơn (chẳng hạn 12 11). + Sử dụng tính chất bắc cầu: a b và b c thì a c. + Trong hai số tự nhiên: Số nào có nhiều chữ số hơn thì số đó lớn hơn. Chẳng hạn: 100 99. Số nào có ít chữ số hơn thì bé hơn. Chẳng hạn: 99 100. Nếu hai số có chữ số bằng nhau thì so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải. + Xếp thứ tự các số tự nhiên: Vì có thể so sánh các số tự nhiên nên có thể xếp thứ tự các số tự nhiên từ bé đến lớn hoặc ngược lại. Ví dụ: Với các số 7698; 7968; 7896; 7869 có thể: + Xếp thứ tự từ bé đến lớn: 7698; 7869; 7896; 7968. + Xếp thứ tự từ lớn đến bé: 7968; 7896; 7869; 7698. Dạng 4 : Toán thực tế. + Sử dụng tính chất bắc cầu để so sánh các bài tập thực tế: a b và b c thì a c. + Dựa vào tập hợp số tự nhiên và thứ tự trong tập hợp các số tự nhiên để suy luận.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. + Biết cách đọc các biểu đồ phần trăm dạng cột, ô vuông và hình quạt. Kĩ năng: + Biết cách dựng các biểu đồ phần trăm dạng cột, ô vuông, hình quạt. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tỉ số của hai số. Tỉ số hai số a và b b 0 là a b. Khái niệm tỉ số thường được dùng khi nói về thương của hai đại lượng (cùng loại và cùng đơn vị đo). Chú ý: + Tỉ số không có đơn vị đo. + Tỉ số của a và b khác b a (tỉ số của b và a). Dạng 2 : Tỉ số phần trăm và biểu đồ phần trăm. Tỉ số phần trăm của hai số a và b là. a% của số M bằng. b% của một số bằng x thì số đó bằng? Dạng 3 : Tỉ lệ xích. a là khoảng cách giữa hai điểm trên bản đồ. B là khoảng cách thực tế của hai điểm này. T là tỉ lệ xích. Chú ý: a và b có cùng đơn vị đo.
Chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nhận biết và hiểu được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. Kĩ năng: + Vận dụng được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. + Áp dụng vào các bài toán thực tiễn. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm giá trị phân số của một số cho trước. Muốn tìm m n của số b cho trước, ta tính. m% của số b bằng. Dạng 2 : Tìm một số biết giá trị phân số của nó. Muốn tìm một số biết m n của nó bằng a, ta tính. Dạng 3 : Dạng toán tính ngược từ cuối và kết hợp sử dụng hai dạng trên.
Chuyên đề hỗn số, số thập phân, phần trăm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hỗn số, số thập phân, phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hỗn số, số thập phân, phần trăm. Kĩ năng: + Biến đổi được hỗn số về phân số và ngược lại. + Biết viết dạng phân số về số thập phân và ngược lại. + Viết được số thập phân dưới dạng kí hiệu %. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết phân số dưới dạng hỗn số và ngược lại. Cách viết phân số a b với a b và 0 b a thành hỗn số: + Bước 1. Thực hiện phép chia a cho b được thương c và số dư d. + Bước 2. a/b = c + d/b = c d/b. Nhận xét: Phần phân số d b luôn nhỏ hơn 1. Chú ý: Nếu phân số âm, ta chỉ cần viết số đối của nó dưới dạng hỗn số rồi thêm dấu “-” trước kết quả. Cách viết một hỗn số dương thành phân số. Chú ý: Nếu hỗn số âm thì ta viết số đối của nó dưới dạng phân số rồi thêm dấu “-” trước kết quả. Dạng 2 : Viết các số dưới dạng số thập phân, phần trăm và ngược lại. Đổi số thập phân ra phân số thập phân. Dạng 3 : Các phép toán với hỗn số. Cộng, trừ hai hỗn số: Nếu a d nhưng b e c f thì ta cần chuyển 1 đơn vị ở phần nguyên của số bị trừ để thêm vào phần phân số, sau đó thực hiện phép trừ. Chú ý: Ta cũng có thể viết các hỗn số dưới dạng phân số rồi thực hiện phép tính cộng, trừ. Nhân, chia hai hỗn số: + Viết hỗn số dưới dạng phân số rồi thực hiện phép nhân, chia phân số. + Khi nhân hoặc chia một hỗn số với một số nguyên, ta có thể viết hỗn số dưới dạng một tổng của một số nguyên và một phân số. Dạng 4 : Các phép tính về số thập phân. Dạng 5 : Tính giá trị của một biểu thức.
Chuyên đề phép chia phân số
Tài liệu gồm 25 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép chia phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Học sinh phát biểu được khái niệm số nghịch đảo và biết cách tìm số nghịch đảo của một số khác 0. + Phát biểu và vận dụng được quy tắc chia hai phân số. Kĩ năng: + Thực hiện được phép chia phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm số nghịch đảo của một số cho trước. Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng 1. Nhận xét: + Với a b và a b 0 0 thì a b và b a là hai số nghịch đảo. + Với a a 0 thì a và 1 a là hai số nghịch đảo. + Số 1 (hoặc -1) có nghịch đảo là chính nó. + Số 0 không có số nghịch đảo. + Mỗi số khác 0 chỉ có duy nhất một số nghịch đảo. Dạng 2 : Thực hiện phép chia phân số. Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia. Muốn chia một phân số cho một số nguyên ta giữ nguyên tử của phân số và nhân mẫu với số nguyên. Dạng 3 : Viết một phân số dưới dạng thương của hai phân số. Ta thực hiện theo các bước sau: + Bước 1. Viết tử và mẫu dưới dạng tích của hai số nguyên. + Bước 2. Lập tích các phân số có tử và mẫu được chọn trong các số nguyên đó. + Bước 3. Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 4 : Tìm x. Dạng 5 : Bài toán có lời văn. Dạng 6 : Tính giá trị của một biểu thức.