Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 8 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 8, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 8 – TP HCM : + Để ước tính chiều cao tối đa của trẻ em khi đạt đến độ trưởng thành, hoàn toàn có thể dựa vào chiều cao của bố mẹ. Cách tính chiều cao của con theo bố mẹ dựa trên công thức tính như sau. Trong đó: C là chiều cao của người con (cm) B là chiều cao của người bố (cm) M là chiều cao của người mẹ (cm) A = 1 khi người con có giới tính là Nam A = -1 khi người con có giới tính là Nữ a) Em hãy dùng công thức trên để tìm chiều cao tối đa của bạn Nam (giới tính là nam) biết Ba của bạn Nam có chiều cao là 172cm và Mẹ của bạn Nam có chiều cao là 160cm. (Làm tròn kết quả đến hàng đơn vị) b) Bạn Hoa (giới tính là nữ) có chiều cao là 164cm. Em hãy tính xem chiều cao tối đa của Mẹ bạn Hoa khi biết chiều cao của Ba bạn Hoa là 175cm. (Làm tròn kết quả đến hàng đơn vị). + Một cửa hàng thực hiện chương trình khuyến mãi một sản phẩm bánh su kem: Mua 4 hộp tặng 1 hộp, bạn An dự định mua 7 hộp bánh, bạn Mai dự định mua 3 hộp bánh. Nếu hai bạn góp tiền mua chung thì sẽ tốn ít tiền hơn khi từng người mua riêng là 50 000 đồng. Hỏi giá bán một hộp bánh su kem là bao nhiêu? + Do các hoạt động công nghiệp thiếu kiểm soát của con người làm cho nhiệt độ Trái đất tăng dần một cách rất đáng lo ngại. Đây cũng là một trong các tác nhân gây ra hiện tượng biến đổi khí hậu dẫn đến lũ lụt, triều cường ngày càng dâng cao. Vào năm 1950, các nhà khoa học đưa ra dự báo nhiệt độ trung bình trên bề mặt trái đất mỗi năm sẽ tăng trung bình 0,02 0 C. Biết rằng, vào năm 1950, nhiệt độ trung bình trên bề mặt trái đất là 15 0 C. Gọi T là nhiệt độ trung bình của bề mặt trái đất tính theo độ C, n là số năm kể từ năm 1950 a) Cho biết T phụ thuộc vào t theo công thức hàm số bậc nhất: T = an + b (a ≠ 0). Em hãy xác định hệ số a và b b) Vào năm nào thì nhiệt độ trung bình trên bề mặt trái đất đạt 16,50 C?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai Sytu xin gửi đến các thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Đồng Nai. Đề thi này bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả hơn. Trích đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai: + Trong năm 2021, có bao nhiêu số nguyên dương đầu tiên không chia hết cho 7 và không chia hết cho 11? + Tìm đa thức bậc ba P(x) = ax^3 + bx^2 + cx + 3 với a, b, c là các hệ số thực. Biết P(x) chia hết cho (x - 1) và khi chia P(x) cho (x – 2) và (x – 3) đều có số dư là 6. + Tìm các số nguyên x và y thỏa mãn bất đẳng thức. Bạn hãy tự tin và tư duy logic để giải quyết các bài toán trong đề thi. Chúc các em học sinh thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD ĐT Cần Thơ Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD ĐT Cần Thơ Xin chào quý thầy, cô và các em học sinh! Sytu hân hạnh giới thiệu đến bạn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Cần Thơ. Bộ đề thi này bao gồm câu hỏi có đáp án và lời giải chi tiết, giúp các em ôn tập hiệu quả cho kỳ thi sắp tới vào ngày 05 tháng 06 năm 2021. Một trong những câu hỏi trong đề tuyển sinh là: "Cho parabol (P): y = x2 và đường thẳng (d): y = -2mx - 2m. Hãy tìm tất cả giá trị của tham số m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn điều kiện |x1 - x2| = 3". Để giải được bài toán này, các em cần áp dụng kiến thức về hệ phương trình, đồ thị hàm số và tính chất của parabol. Hãy cố gắng suy nghĩ logic và sáng tạo để tìm ra đáp án chính xác nhé! Chúc các em ôn tập thật tốt và đạt kết quả cao trong kỳ thi sắp tới. Hy vọng đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sẽ là công cụ hữu ích cho quá trình ôn tập của các em. Cám ơn bạn đã đọc tin!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Sytu xin gửi đến thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước. Đề thi bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm, sẽ diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước: + Cho phương trình: \(2x^2 - mx + m^3 - 8m + 5 = 0\) với m là tham số. a) Tìm m để phương trình có 2 nghiệm trái dấu. b) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn điều kiện: \(2x^2 + x - 1 = 0\). + Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn O, D là điểm chính giữa trên cung nhỏ BC của đường tròn O, H là chân đường cao từ A của tam giác ABC. Hai điểm K L lần lượt là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh AL CB AB KL. b) Lấy điểm E trên đoạn thẳng AD sao cho BD DE. Chứng minh E là tâm đường tròn nội tiếp tam giác ABC. c) Đường thẳng KL cắt đường tròn O tại hai điểm M N (K nằm giữa M L). Chứng minh AM AN AH. + Cho hai số tự nhiên a b thỏa mãn \(a^2 + b^2 = 32\). Chứng minh rằng \(a^2b^2\) là số chính phương. Mọi chi tiết xin vui lòng xem trong file Word đính kèm.
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD ĐT Lào Cai Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD ĐT Lào Cai Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến quý vị bộ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm học 2021-2022 do sở GD&ĐT Lào Cai tổ chức. Đề thi bao gồm đáp án và lời giải chi tiết, sẽ diễn ra vào ngày 03 tháng 06 năm 2021. Dưới đây là một số câu hỏi trích từ đề thi: Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km, người đó đã nghỉ 20 phút. Để đến B đúng giờ, người đó phải tăng tốc độ thêm bao nhiêu km/h? Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Chứng minh rằng… Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x, y thỏa mãn 3^x * 3^y = p^xy = 6^8. Tìm giá trị lớn nhất của p. Quý thầy cô và các em học sinh có thể tải file WORD để xem đầy đủ nội dung đề thi và các câu hỏi khác. Chúc quý vị ôn tập tốt và thành công trong kỳ thi sắp tới!