Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Trương Công Định - Hải Phòng

Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 trường THCS Trương Công Định, quận Lê Chân, thành phố Hải Phòng gồm 2 trang, đề gồm 5 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề khảo sát Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Trương Công Định – Hải Phòng : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 3)x – 2m + 2 (m là tham số và m thuộc R). a) Với m = 5, hãy tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d). b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt nằm cùng phía bên phải trục tung. + Theo Điều 6 Nghị định 171/2013/NĐ-CP về xử phạt vi phạm hành chính trong lĩnh vực giao thông đường bộ và đường sắt. Cụ thể: Đối với ôtô: – Phạt tiền từ 600.000 đồng đến 800.000 đồng nếu điều khiển xe chạy quá tốc độ quy định từ 05 km/h đến dưới 10 km/h. – Phạt tiền từ 2 triệu đồng đến 3 triệu đồng nếu điều khiển xe chạy quá tốc độ quay định từ 10 km/h đến 20 km/h. – Phạt tiền từ 4 triệu đồng đến 6 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 20 km/h đến 35 km/h. – Phạt tiền từ 7 triệu đồng đến 8 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 35 km/h; điều khiển xe đi ngược chiều trên đường cao tốc, trừ các xe ưu tiên đang đi làm nhiệm vụ khẩn cấp theo quy định. [ads] Áp dụng các quy định trên để giải bài toán sau: Một cơ quan tổ chức di du lịch bằng 2 xe ô tô qua đường cao tốc Hải Phòng – Hà Nội dài 120km. Hai xe cùng khởi hành một lúc tại đầu đường cao tốc phía Hải Phòng, xe thứ nhất chạy chậm hơn xe thứ hai 44 km/h do đó xe thứ nhất đến hết đường cao tốc chậm hơn xe thứ hai là 22 phút. Biết rằng khi đến cuối đường có trạm kiểm soát tốc độ, hỏi khi đó có xe nào trong hai xe bị xử phạt vi phạm tốc độ hay không? Mức xử phạt là bao nhiêu tiền? (Giả sử vận tốc hai xe không đổi trên đường cao tốc, vận tốc tối đa cho phép là 120 km/h). + Cho hình chữ nhật ABCD có BC = 3cm, AB = 4cm. Quay hình chữ nhật đó một vòng quanh AB được một hình trụ. Tính diện tích xung quanh của hình trụ đó.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh (đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Bắc Ninh : + Cho đường tròn (C) có đường kính AB. Lấy điểm C thuộc đoạn AO (C khác A O). Vẽ đường tròn (I) đường kính BC. Vẽ tiếp tuyến AD và cát tuyến AEF với đường tròn (I) (E nằm giữa A F) sao cho tia AO nằm giữa 2 tia AD AE. Đường thẳng vuông góc với AB từ C cắt đường tròn (O) tại hai điểm gọi một điểm là N sao cho N, D thuộc hai nửa mặt phẳng đối nhau bờ AB. Gọi S là giao điểm của hai đường thẳng DI và NB. R là giao DN và AS. Gọi J là trung điểm SD. a) Chứng minh tam giác AND cân. b) L T lần lượt là tìm đường tròn ngoại tiếp các tam giác SBC và SEF. Chứng minh ba điểm J L T thẳng hàng. + Cho hình vuông ABCD có diện tích là S. Tứ giác MNPQ có bốn đỉnh M N P Q thuộc AB BC CD DA và 4 đỉnh này không trùng 4 đỉnh hình vuông. Chứng minh S AC MN NP PQ QM 4. + Có 10 bạn học sinh tham gia thi đấu bóng bàn. Hai bạn bất kì đều phải đấu với nhau một trận, bạn nào cũng gặp 9 đối thủ của mình và không có trận nào hòa. Chứng minh rằng luôn xếp được 10 bạn thành 1 hàng dọc sao cho bạn đứng trước thắng bạn đứng kề sau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho phương trình x2 – (2m – 1)x + m2 – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn x13 + x23 – 5x1x2 = 10m + 15. + Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2 cm. + Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định.
Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.