Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic 27 tháng 4 Toán 10 năm 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic 27 tháng 4 môn Toán 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn Đề thi Olympic 27 tháng 4 Toán 10 năm 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một nhà máy sử dụng ba dây chuyền để sản xuất bánh kẹo và cho ra thị trường hai sản phẩm: gồm loại 1 và loại 2 trong một chu trình sản xuất. Để sản xuất ra một tấn sản phẩm loại 1 cần sử dụng dây chuyền I trong 1 giờ, dây chuyền II trong 2 giờ và dây chuyền III trong 3 giờ, đồng thời nhà máy thu về khoản lợi nhuận 40 triệu đồng. Để sản xuất ra một tấn sản phẩm loại 2 cần sử dụng dây chuyền I trong 6 giờ, dây chuyền II trong 3 giờ và dây chuyền III trong 2 giờ, đồng thời nhà máy thu về khoản lợi nhuận 50 triệu đồng. Biết rằng dây chuyền I hoạt động không quá 36 giờ, dây chuyền II hoạt động không quá 23 giờ và dây chuyền III hoạt động không quá 27 giờ. Hãy lập phương án sản xuất cho nhà máy để tiền lãi thu được nhiều nhất. + Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên có 5 chữ số mà trong các số lập được mỗi chữ số có mặt không quá hai lần. + Cho bộ ba số thực không đồng thời bằng nhau (a; b; c). Người ta thực hiện liên tiếp các thao tác thay bộ ba số đang có thành bộ ba số mới. Mỗi lần từ bộ ba số (x; y; z) đang có sẽ được thay bởi bộ số (x – y; y − z; z − x). Chứng minh rằng từ bộ số (a; b; c), sau hữu hạn bước thực hiện theo quy tắc đã cho, trong bộ ba số thu được sẽ có ít nhất một số lớn hơn 100.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2022 - 2023 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề thi học sinh giỏi tỉnh Toán 10 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Ông A đang ăn chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là X và Y. Mỗi gói thực phẩm X chứa 20 đơn vị can xi, 20 đơn vị sắt và 10 đơn vị vitamin B. Mỗi gói thực phẩm Y chứa 20 đơn vị can xi, 10 đơn vị sắt và 20 đơn vị vitamin B. Yêu cầu hàng ngày với chế độ ăn kiêng là tối thiểu 240 đơn vị can xi, 160 đơn vị sắt và 140 đơn vị vitamin B. Mỗi ngày không được dùng quá 12 gói mỗi loại. Giá một gói loại X là 20.000đ, một gói loại Y là 25.000đ. Hỏi một ngày ông A cần dùng mỗi loại thực phẩm bao nhiêu để chi phí mua là ít nhất. + Trong kỳ thi học sinh giỏi cấp trường, một trường THPT đã dùng 7 cuốn sách tham khảo môn Toán, 6 cuốn sách tham khảo môn Vật lý, 5 cuốn sách tham khao môn Hóa học để làm phần thưởng cho 9 học sinh có kết quả cao nhất, các cuốn sách cùng môn là giống nhau và mỗi em sẽ nhận hai cuốn sách khác loại. Trong 9 em thì có hai em An và Bình. Hỏi có bao nhiêu khả năng để An và Bình có phần thưởng giống nhau? + Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Biết giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ, thì không có phòng trống. Nếu cứ tăng giá mỗi phòng trọ lên 200.000đ/1 tháng, thì sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh sẽ cho thuê với giá là bao nhiêu để có thu nhập mỗi tháng cao nhất?
Đề thi HSG Toán 10 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án. Trích dẫn Đề thi HSG Toán 10 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Một công ti bắt đầu sản xuất và bán một loại máy tính từ năm 2016. Số lượng loại máy tính đó bán được trong năm 2016 và năm 2022 lần lượt là 195 nghìn và 177 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ti, trong khoảng 15 năm kể từ năm 2016, số lượng máy tính loại đó bán được mỗi năm có thể được mô tả bởi một hàm số bậc hai. Giả sử t là thời gian tính từ năm 2016. Số lượng loại máy tính đó bán được trong năm 2016 và năm 2022 lần lượt được biểu diễn bởi các điểm (0;195) và (6;177). Giả sử điểm (6;177) là đỉnh đồ thị của hàm số bậc hai này. Hỏi trong các năm từ 2016 đến hết năm 2027 có tất cả bao nhiêu năm công ti đó bán được vượt mức 179 nghìn chiếc máy tính? + Nhằm thu hút học viên, một trung tâm thông báo học phí của một khóa học như sau: 14 học viên đầu tiên sẽ có phí là 24 USD/người. Nếu có nhiều hơn 14 người đăng kí thì cứ có thêm 1 người, học phí sẽ giảm 1 USD/ người cho toàn bộ học viên. Biết rằng chi phí vận hành của khóa học là 136 USD. Gọi x là số học viên tính từ học viên thứ 15 trở lên. x nằm trong khoảng bao nhiêu thì trung tâm có lãi? + Lớp 12A có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn, 8 học sinh giỏi Anh trong đó có 5 học sinh giỏi cả Toán và Anh, 6 học sinh giỏi cả Toán và Văn, 7 học sinh giỏi cả Văn và Anh, 4 học sinh giỏi cả ba môn. Tính số học sinh giỏi ít nhất hai môn của lớp 12A?
Đề thi HSG Toán 10 năm 2022 - 2023 trường THPT Nguyễn Thượng Hiền - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Thượng Hiền, thành phố Hồ Chí Minh (lần thứ 26); đề thi gồm hai phần: phần chung dành cho tất cả các thí sinh; phần riêng dành cho học sinh lớp 10 chuyên Toán và lớp 10 không chuyên. Trích dẫn Đề thi HSG Toán 10 năm 2022 – 2023 trường THPT Nguyễn Thượng Hiền – TP HCM : + Lớp 10A có 14 học sinh giỏi Toán, 10 học sinh giỏi Hóa, 8 học sinh giỏi Lý, trong đó có 4 học sinh giỏi Lý, Hóa, 5 học sinh giỏi Toán, Lý, 7 học sinh giỏi Toán, Hóa và 3 học sinh giỏi cả ba môn. Chia tất cả học sinh của lớp thành các tổ có số lượng thành viên bằng nhau. Theo bạn có thực hiện được việc làm này không? Vì sao? + Xét tam giác NTH đều cạnh a. Gọi (X) là tập hợp tất cả điểm M thỏa mãn đẳng thức sau: MN.MH – MN.MT = 2MN2. Tính diện tích của (X). + Cho tứ giác ABCD nội tiếp có các cặp cạnh đối không song song. Các đường thẳng AB và CD cắt nhau tại điểm E và các đường chéo AC và BD cắt nhau tại F. Đường tròn ngoại tiếp các tam giác AFD và BFC cắt nhau tại điểm thứ hai K. Chứng minh rằng hai đường thẳng EK và FK vuông góc.