Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường chuyên Hạ Long - Quảng Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 2 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 113). Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường chuyên Hạ Long – Quảng Ninh : + Mã ISBN (viết tắt của International Standard Book Number) của một quyển sách là mã số tiêu chuẩn quốc tế duy nhất để xác định một quyển sách trên toàn thế giới, được in trên bìa sách. Ở Việt Nam theo quy định tại Thông tư 05 2016 TT BTTTT, mã ISBN là một dãy số gồm 13 chữ số, ví dụ mã ISBN của cuốn Đoạn đường để nhớ (Nicholas Sparks, Thái Hà dịch, Nhã Nam phát hành 2017) là: 978 – 604 – 926 – 714 – 7, trong đó 978 là mã cố định của sản phẩm là sách, 604 là mã quốc gia của Việt Nam, 6 chữ số tiếp theo là mã nhà phát hành và mã sản phẩm, còn chữ số cuối cùng là mã kiểm tra, dùng để kiểm tra xem các số phía trước được ghi chính xác hay không. Mã kiểm tra được tính như sau: 1. Đánh số thứ tự của 12 số đầu từ 1 tới 12 từ trái sang phải. 2. Lấy tổng các chữ số thứ tự lẻ. 3. Lấy tổng các chữ số thứ tự chẵn, rồi nhân với 3. 4. Cộng hai con số ở hai bước trên lại, lấy số dư của nó khi chia cho 10. 5. Lấy 10 trừ con số ở bước trên, ra Mã kiểm tra. Nếu bước này ra 10, thì mã kiểm tra là 0. Ví dụ, với mã của cuốn sách ở trên: ta tính (9 + 8 + 0 + 9 + 6 + 1) + 3.(7 + 6 + 4 + 2 + 7 + 4) = 123, số dư của nó khi chia cho 10 bằng 3, nên mã kiểm tra là 10 – 3 = 7. Trong 50 cuốn sách, có 12 số đầu mã ISBN liên tiếp từ 978 – 604 – 926 – 001 tới 978 – 604 – 926 – 050, có bao nhiêu cuốn sách có mã kiểm tra là 1? + Với hai số thực a, b thỏa mãn: hàm số f(x) = ax2 + b/x có đúng một cực tiểu và không có cực đại; đồng thời hàm số g(x) = f(x2 – 2x) có đúng 2 cực tiểu và 1 cực đại, trong đó điểm cực đại của g(x) bằng điểm cực tiểu của f(x); hai giá trị cực tiểu của g(x) bằng nhau và bằng giá trị cực tiểu của f(x); tìm giá trị nhỏ nhất của biểu thức P = (a2 + ab + 1)/(a + b). + Trong các hình nón có đỉnh và đường tròn đáy đều nằm trên mặt cầu có bán kính bằng 3, hình nón có thể tích lớn nhất thì có diện tích xung quanh bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Cà Mau : + Trên tập số phức, xét phương trình z2 – 2z + 1 – m = 0 (m là tham số thực). Gọi S là tập hợp các giá trị của tham số m để phương trình đã cho có nghiệm thỏa mãn |z| = 3. Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x + 3)2 + (y − 2)2 + (z − 2)2 = 27. Gọi mặt phẳng (P): x + by + 2z + c = 0 đi qua hai điểm A(0;0;−2), B(–4;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Khi đó a2 + b2 + c2 bằng? + Cho f(x) là đa thức bậc 5 có đồ thị hàm số f'(x) như hình vẽ bên dưới. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(x) – x + a trên đoạn [-3/2;1]. Có bao nhiêu giá trị nguyên của a thuộc [-2023;2023] để 9m2 – 320M > 0?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Hai Bà Trưng – TT Huế : + Trong không gian Oxyz, cho đường thẳng 1 1 2 1 1 x y z. Hai điểm M N thay đổi, lần lượt nằm trên các mặt phẳng P x 2 0 Q z 2 0 sao cho trung điểm K của đoạn thẳng MN luôn thuộc đường thẳng. Giá trị nhỏ nhất của độ dài đoạn thẳng MN thuộc khoảng nào dưới đây? + Cho hàm số y f x có đạo hàm liên tục, nhận giá trị dương trên 0 f 1 1 và thỏa mãn 3 3 4 x f x f x x f x x 2 2 0. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x trục hoành và hai đường thẳng x x 1 4. + Cho khối nón N có đỉnh S tâm đường tròn đáy là O góc ở đỉnh bằng 120. Một mặt phẳng P đi qua S cắt hình nón N theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 4. Tính thể tích V của khối nón N.
Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Biên Hòa, tỉnh Hà Nam; đề thi có đáp án mã đề 101. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Biên Hòa – Hà Nam : + Cho hai mặt cầu 2 2 2 Sx y z 1 3 36 và 2 2 Sx y z 1 1 81. Gọi d là đường thẳng tiếp xúc với cả hai mặt cầu trên và cách điểm M 4 1 7 một khoảng lớn nhất. Gọi E mn p là giao điểm của d với mặt phẳng P xyz 2 17 0. Biểu thức T mn p có giá trị bằng? + Cho hàm số 3 2 f x x mx nx 2 2022 với m n là các số thực. Biết hàm số gx f x f x f x có hai giá trị cực trị là 2023 e 12 và e 12. Diện tích hình phẳng giới hạn bởi các đường 12 f x y g x và y 1 bằng? + Cho các số thực b c sao cho phương trình 2 z bz c 0 có hai nghiệm phức 1 2 z z thỏa mãn 1z i 43 1 và 2 z i 86 4. Mệnh đề nào sau đây đúng?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Đông Hà - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 trường THPT Đông Hà, tỉnh Quảng Trị; đề thi có đáp án mã đề 111 112 113 114. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT Đông Hà – Quảng Trị : + Để chuẩn bị kỷ niệm 50 năm ngày thành lập trường THPT Đông Hà, nhà trường thành lập hai tổ học sinh để đón tiếp các vị đại biểu. Tổ một gồm 3 học sinh Khối 12 và 2 học sinh Khối 11, tổ hai gồm 3 học sinh Khối 12 và 4 học sinh Khối 10. Chọn ngẫu nhiên từ mỗi tổ ra 2 học sinh, tính xác suất để trong 4 học sinh được chọn có đủ học sinh của cả ba Khối. + Trong không gian Oxyz, cho mặt phẳng P x y z 2 1 0 và hai điểm A 5 2 1 B 3 2 1. Điểm M thuộc mặt phẳng P sao cho các đường thẳng AM và BM luôn tạo với P các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn C cố định có tâm I a b c. Tính T a b c 2. + Cho hình trụ có hai đáy là hai hình tròn O R và O R và AB là một dây cung của đường tròn O R sao cho tam giác O AB là tam giác đều. Mặt phẳng O AB tạo với mặt phẳng chứa đường tròn O R một góc 60. Biết R a tính khoảng cách từ O đến mặt phẳng O AB.