Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN Hà Nội (Vòng 2)

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2), đề được dành cho các thí sinh dự thi vào các lớp 10 chuyên Toán – Tin. Đề thi gồm 1 trang với 4 bài toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) : + Với x, y là các số thực dương thỏa mãn điều kiện 4x^2 + 4y^2 + 17xy + 5x + 5y ≥ 1, tìm giá trị nhỏ nhất của biểu thức: P = 17x^2 + 17y^2 + 16xy. [ads] + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K, L lần lượt là hình chiếu vuông góc của E, F lên BC. Giả sử FK cắt EL tại điềm J. Gọi H là hình chiếu vuông góc của J lên BC. 1) Chứng minh rằng HJ là phân giác của EHF. 2) Ký hiệu S1 và S2 lần lượt là diện tích của các tứ giác BFJL và CEJK. Chứng minh rằng: S1/S2 = BF^2/CE^2. 3) Gọi D là trung điểm của cạnh BC. Chứng minh rằng ba điềm P, J, D thẳng hàng. + Cho M là tập tất cả 4039 Số nguyên liên tiếp từ -2019 đến 2019. Chứng minh rằng trong 2021 số đôi một phân biệt được chọn bất kì từ tập M luôn tồn tại 3 số đôi một phân biệt có tổng bằng 0.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 THPT 2018 - 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên)
Đề tuyển sinh vào lớp 10 THPT 2018 – 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên) gồm 1 trang với 10 bài toán tự luận, thí sinh làm bài trong 120 phút (không tính thời gian phát đề), kỳ thi được tổ chức vào ngày 01 tháng 06 năm 2018, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chung)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề chung dành cho tất cả các thí sinh) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thí sinh làm bài trong thời gian 120 phút, kết quả của bài thi này là cơ sở để tuyển sinh vào lớp 10 các trường THPT chuyên thuộc sở GD và ĐT Thái Bình, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 THPT chuyên năm 2018 – 2019 môn Toán sở Thái Bình : + Cho đường tròn tâm O bán kính a và điểm J có JO = 2a. Các đường thẳng JM, JN theo thứ tự là các tiếp tuyến tại M, tại N của đường tròn (O). Gọi K là trực tâm của tam giác JMN, H là giao điểm của MN với JO. a) Chứng minh rằng: H là trung điểm của OK. b) Chứng minh rằng: K thuộc đường tròn tâm O bán kính a. [ads] c) JO là tiếp tuyến của đường tròn tâm M bán kính r. Tính r. d) Tìm tập hợp điểm I sao cho từ điểm I kẻ được hai tiếp tuyến với đường tròn (O) và hai tiếp tuyến đó vuông góc với nhau. + Cho hai đường thẳng (d1): y = (-1/m)x + 1/m (với m là tham số, m khác 0). Gọi I(x0; y0) là tọa độ giao điểm của hai đường thẳng (d1) với (d2). Tính x0^2 + y0^2.
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT TP. HCM
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT TP. HCM được biên soạn theo hình thức tự luận với 8 bài toán, thí sinh làm bài trong thời gian 120 phút, kỳ thi được tổ chức vào ngày 03/06/2018 nhằm đánh giá và phân loại năng lực học Toán của các em học sinh khối lớp 9, để từ đó các trường THPT trên địa bàn Thành phố Hồ Chí Minh có cơ sở để tuyển sinh theo chỉ tiêu của mỗi trường, đề thi có lời giải chi tiết .