Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 vòng 1 năm 2023 - 2024 trường THPT chuyên Hà Nội - Amsterdam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 09 năm 2023. Trích dẫn Đề thi HSG Toán 9 vòng 1 năm 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam : + Với các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. + Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AB, AC lần lượt lấy các điểm M, N và trên cạnh BC lấy các điểm P, Q sao cho tứ giác MNPQ là hình vuông. Gọi E là giao điểm của CM với PN, F là giao điểm của BN với MQ. 1) Chứng minh rằng đường thẳng PF song song với đường thẳng CM. 2) Lấy điểm G trên đoạn thẳng MN sao cho GM = QF. Chứng minh: Tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3) Đường thẳng qua Q song song với GE cắt đường thẳng qua P song song với GF tại S, các đường thẳng SM, SN cắt BC lần lượt tại K, L. Chứng minh: KL2 = QK.PL. + Một tập con A của tập hợp các số nguyên dương được gọi là tập tốt nếu thỏa mãn đồng thời các điều kiện sau: i) Tập A chứa ít nhất 2 phần tử. ii) Phần tử lớn nhất của tập A là 2023. iii) Với mọi cặp phần tử a, b thuộc A mà a > b, ta luôn có (a – b)/(a;b) thuộc A, trong đó (a;b) là ước chung lớn nhất của a và b. 1) Chỉ ra một tập tốt có nhiều phần tử nhất. 2) Xác định tất cả các tập tốt.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng : + Trong phòng họp của công ty có một số ghế dài. Nếu xếp mỗi ghế bốn người dự họp thì thiếu một ghế. Nếu xếp mỗi ghế năm người dự họp thì thừa một ghế. Hỏi phòng họp của công ty có bao nhiêu ghế và bao nhiêu người dự họp? + Cho tam giác ABC, gọi M là trung điểm cạnh BC. Trên tia đối của tia CA lấy điểm D (DC > AC). Gọi N là trung điểm đoạn AD, kẻ đường thẳng qua D song song MN, cắt AB tại E. Hai đường thẳng EC và BD cắt nhau tại O. Chứng minh rằng tam giác ODE và tứ giác ABOC có diện tích bằng nhau. + Cho hình vuông ABCD tâm O. Lấy điểm E trên đoạn AB (E khác B và A), gọi F là giao điểm của CE và DA, đường thẳng DE cắt đường tròn (O;OA) tại điểm K (K khác D). Qua K kẻ tiếp tuyến KH với đường tròn (O;AB/2) (H thuộc (O;OA) và nằm khác phía với D qua FC). a) Chứng minh rằng tứ giác KHDA là hình thang cân. b) Chứng minh rằng F, K, H thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Có 75 bóng đèn gồm 30 bóng xanh, 25 bóng đỏ, 20 bóng vàng. Mỗi lượt người ta đổi màu của hai bóng khác màu sang màu thứ ba (chẳng hạn đổi màu một bóng xanh và một bóng đỏ thành hai bóng vàng). Có thể xảy ra được toàn bộ 75 bóng đèn đều cùng một màu hay không? Vì sao? + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại các điểm M, N, P. Gọi Q là hình chiếu vuông góc của M xuống NP (Q thuộc NP). Kẻ BH, CT lần lượt vuông góc với đường thẳng PN (H và T thuộc PN) a) Chứng minh: Tam giác BPH đồng dạng tam giác CNT b) Chứng minh: QM là tia phân giác góc BQC c) Gọi G là điểm chính giữa cung BAC của đường tròn (O). GM cắt (O) tại E. Chứng minh: A, Q, E thẳng hàng. + Cho a, b, c là các số thực khác 0 thỏa mãn: a b c. Chứng minh a, b, c đôi một khác nhau thì a2b2c2 = 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THCS năm 2022 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán bậc THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (bảng A và bảng B); kỳ thi được diễn ra vào thứ Tư ngày 23 tháng 02 năm 2022.