Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 07 bài toán hình thức tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 12 năm 2022. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho hàm số y = 2x có đồ thị là (d1) và hàm số y = -x + 4 4 có đồ thị là (d2) a) Vẽ (d1) và (d2) trên cùng một mặt phẳng toạ độ Oxy. b) Xác định các hệ số a, b của đường thẳng (d3): y = ax + b. Biết đường thẳng (d3) song song với (d1) và đường thẳng (d3) đi qua điểm A(2;2). + Lúc đầu, trong kho hàng của một công ty có 150 tấn hàng. Mỗi ngày công ty xuất kho 5 tấn hàng. Gọi y là số tấn hàng còn lại trong kho sau x ngày xuất kho. a) Hãy viết công thức tính số tấn hàng còn lại trong kho sau x ngày xuất kho. b) Hỏi sau bao nhiêu ngày số hàng trong kho sẽ hết? + Một con dốc có góc nghiêng CBA = 30° so với mặt đất bằng phẳng, định dốc có độ cao CA = 500m (hình vẽ). a) Tính độ dài BC của con dốc? b) Một người di chuyển trên dốc, khi còn cách đỉnh dốc 150m (tại vị trí K) thì người đó đang ở độ cao bao nhiêu so với mặt đất bằng phẳng?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bến Tre
Đề thi HK1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bến Tre gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trich dẫn đề thi HK1 Toán 9 : + Cho hàm số y = (2m + 1)x – 6 có đồ thị (d). a. Với giá trị nào của m thì hàm số đồng biến trên R. b. Tìm m để đồ thị hàm số (d) đã cho đi qua điểm A(1; 2). c. Vẽ (d) khi m = -2. [ads] + Một cột đèn cao 7m có bóng trên mặt đất dài 4m. Gần đó có một tòa nhà cao tầng có bóng trên mặt đất dài 80m (như hình vẽ). Em hãy cho biết tòa nhà đó có bao nhiêu tầng, biết rằng mỗi tầng cao 2m. + Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC) biết góc ACB bằng 60 độ, CH = a. Tính độ dài AB và AC theo a.
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tứ Kỳ - Hải Dương
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tứ Kỳ – Hải Dương gồm 5 bài toán tự luận, thoiwfgian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho hàm số bậc nhất: y = (k – 2)x + k^2 – 2k; (k là tham số) 1. Vẽ đồ thị hàm số khi k = 1. 2. Tìm k để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2. + Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. [ads] 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2√PE.QF = EF
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tam Đảo - Vĩnh Phúc
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tam Đảo – Vĩnh Phúc gồm 6 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2 a) Chứng minh tam giác BHO = tam giác CHO (2 cạnh góc vuông) Suy ra OB = OC Suy ra OC = R Suy ra C thuộc (O, R). Chứng minh tam giác ABO = tam giác ACO (c.g.c) Suy ra góc ABO = góc ACO Mà AB là tiếp tuyến của (O, R) nên AB ⊥ BO Suy ra góc ABO = 90 độ, suy ra góc ACO = 90 độ Nên AC vuông góc với CO Do đó AC là tiếp tuyến của (O, R). [ads] b) Chứng minh: Tam giác OHK đồng dạng với tam giác OIA Suy ra OH/OI = OK/OA, suy ra OH.OA = OI.OK Tam giác ABO vuông tại B có BH vuông góc với BO Suy ra BO^2 = OH.OA = OH = R^2 Vậy OH.OA = OI.OK = R^2
Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D