Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Hoàng Hoa Thám Đà Nẵng

Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Hoàng Hoa Thám Đà Nẵng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Hoàng Hoa Thám, thành phố Đà Nẵng; đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề 101 – 102 – 103 – 104. Trích dẫn Đề cuối kì 2 Toán lớp 10 năm 2022 – 2023 trường THPT Hoàng Hoa Thám – Đà Nẵng : + Hãng hàng không Quốc gia VietNam Airlines khai thác duy nhất một chuyến bay từ Đà Nẵng đi Đà Lạt vào ngày 30 tháng 4 với các loại vé khác nhau được mô tả bởi sơ đồ hình cây sau đây: Một người muốn mua vé của hãng máy bay VietNam Airlines đi từ Đà Nẵng đến Đà Lạt vào ngày 30 tháng 4. Hỏi có bao nhiêu loại vé để người đó lựa chọn? + Vòm cửa của một công ty X có dạng hình parabol với khoảng cách giữa hai chân vòm là AB m 6 và chiều cao bằng 4 m (tính từ đỉnh của parabol đến mặt đất). Người ta thiết kế hai cánh cửa bằng kính cường lực có dạng hình chữ nhật MNPQ với hai đỉnh M, N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất (như hình vẽ). Biết chiều cao cánh cửa là MQ m 3 và khe hở giữa hai cánh cửa là không đáng kể. Tính diện tích phần mặt kính cường lực làm cửa MNPQ. + Đội tuyển Giáo dục Quốc phòng của một trường Trung học phổ thông A có 9 học sinh gồm 2 học sinh lớp 10, 3 học sinh lớp 11 và 4 học sinh lớp 12. Thầy giáo muốn xếp đội tuyển thành một đội hình hàng ngang sao cho giữa 2 học sinh lớp 10 không có học sinh nào lớp 11. Hỏi có bao nhiêu cách xếp hàng như vậy? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.
Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10
Tài liệu gồm 49 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK2 Toán 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán 10: + Tính tổng S bao gồm tất cả các giá trị tham số m để đường thẳng x + my – 2m + 3 = 0 cắt đường tròn (C): x^2 + y^2 + 4x + 4y + 6 = 0 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất, trong đó I là tâm đường tròn (C). [ads] + Một người thợ xây cần xây một bể chứa 10m3 nước, có dạng hình hộp chữ nhật với đáy là hình vuông và không có nắp. Hỏi chiều dài, chiều rộng và chiều cao của lòng bể bằng bao nhiêu để số viên gạch dùng để xây bể là ít nhất, biết thành bể và đáy bể đều được xây bằng gạch, độ dày của thành bể và đáy là như nhau, các viên gạch có kích thước như nhau và số viên gạch trên một đơn vị diện tích bằng nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại B có BC = 2AB. Điểm M (2;– 2) là trung điểm của cạnh AC. Gọi N là điểm trên cạnh BC sao cho BC = 4BN. Điểm H(4/5;8/5) là giao điểm của AN và BM. Biết N thuộc đường thẳng x + 2y = 6, tính tổng các hoành độ của C và A khi hai đỉnh đó có tọa độ nguyên.
Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường Lê Quý Đôn - Quảng Ninh
Ngày 11 tháng 05 năm 2019, trường THPT Lê Quý Đôn, tỉnh Quảng Ninh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán dành cho học sinh khối lớp 10. Đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Lê Quý Đôn – Quảng Ninh có mã đề 101 được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận theo thang điểm 6:4, phần trắc nghiệm gồm 24 câu, phần tự luận gồm 3 câu, thời gian học sinh làm bài là 75 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Lê Quý Đôn – Quảng Ninh : + Tập nghiệm của bất phương trình 3x – 2y + 1 < 0 là? A. Nửa mặt phẳng chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (không bao gồm đường thẳng). B. Nửa mặt phẳng chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (bao gồm đường thẳng). C. Nửa mặt phẳng không chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (bao gồm đường thẳng). D. Nửa mặt phẳng không chứa gốc tọa độ, bờ là đường thẳng 3x – 2y + 1 = 0 (không bao gồm đường thẳng). [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49° và DB1C1 = 35°. Chiều cao CD của tháp là? (làm tròn đến hàng phần trăm). + Đường tròn (C) có tâm I(−1;2) và cắt đường thẳng d: 3x – y – 15 = 0 theo một dây cung có độ dài bằng 6. Tìm phương trình đường tròn (C).