Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lâm Đồng

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lâm Đồng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng : + Trong lễ phát động phong trào trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ, lớp 9A được giao trồng 360 cây. Khi thực hiện có 4 bạn được điều đi làm việc khác, nên mỗi học sinh còn lại phải trồng thêm một cây so với dự định. Hỏi lớp 9A có bao nhiêu học sinh? (Biết số cây trồng của mỗi học sinh như nhau). [ads] + Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD không đi qua tâm O (C nằm giữa A và D). Gọi E là trung điểm của CD. Chứng minh rằng ABOE là tứ giác nội tiếp. + Cho △ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). Tia FE cắt đường tròn tại M. Chứng minh AM^2 = AH.AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Hùng Vương - Phú Thọ (Chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Tin) gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho đường tròn (O; R) có đường kính AB, M là điểm thuộc đoạn AB (M không trùng với A và B). Qua M vẽ đường thẳng (d) vuông góc với AB. Trên (d) lấy điểm C nằm ngoài (O). Vẽ các tiếp tuyến CE, CF với (O) ( E, F là tiếp điểm). Gọi H, K lần lượt là giao điểm của CA, CB với (O) (H khác A, K khác B), I là giao điểm của AK và BH [ads] a) Chứng minh các điểm C, M, E, F, O cùng thuộc một đường tròn b) Chứng minh ba điểm E, F, I thẳng hàng c) Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT Đào Duy Từ - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax  By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A ), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P 1) Chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn 2) Chứng minh AI.BK = AC.BC 3) Cho biết A,B,I cố định. Xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất [ads] + Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong mỗi trường hợp sau: a) Khi a = 1 b) Khi a = 2
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)