Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An

Nội dung Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề chọn đội tuyển thi HSG tỉnh lớp 9 Toán năm 2022 - 2023 Đề chọn đội tuyển thi HSG tỉnh lớp 9 Toán năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 25 tháng 10 năm 2022. Dưới đây là một số câu hỏi trong đề thi: Cho x, y là các số nguyên thỏa mãn 2x^2 + x = 3y^2 + y. Chứng minh rằng x - y, 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương. Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB), kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh rằng HBO đồng dạng MCH. b) Chứng minh rằng BO/CH. c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất. Cho x, y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng? Hy vọng các em sẽ hoàn thành tốt các câu hỏi này và chuẩn bị tinh thần để đạt kết quả cao trong kỳ thi sắp tới. Chúc các em may mắn và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội
Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.