Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử HSG Toán 9 năm 2023 - 2024 cụm chuyên môn 6 Yên Thành - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử học sinh giỏi môn Toán 9 năm học 2023 – 2024 cụm chuyên môn số 6 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG Toán 9 năm 2023 – 2024 cụm chuyên môn 6 Yên Thành – Nghệ An : + Cho tam giác ABC nhọn. Các đường cao AD; BE; CF cắt nhau tại H. Gọi M là trung điểm của HC; N là trung điểm của AC. AM cắt HN tại G. Đường thẳng qua M vuông góc với HC và đường thẳng qua N vuông góc với AC cắt nhau tại K. Chứng minh rằng: a) Tam giác AEF đồng dạng với tam giác ABC. Từ đó hãy suy ra SAEF = SABC.cos2BAC. b) BH.KM = BA.KN. c) 5 4 2 GA GB GH GM GK GN. + Cho bảng ô vuông kích thước 10cm x10cm gồm 100 ô vuông đơn vị. Điền vào mỗi ô vuông của bảng này một số nguyên dương không vượt quá 10 sao cho hai số ở hai ô vuông chung cạnh hoặc chung đỉnh nguyên tố cùng nhau. Chứng minh rằng trong bảng ô vuông đã cho có một số xuất hiện ít nhất 17 lần. + Chứng minh rằng: n3 + 6n2 + 8n chia hết cho 48 với n là số nguyên chẵn. Cho 2 số tự nhiên a và b. Chứng minh rằng nếu tích a.b là số chẵn thì luôn luôn tìm được số nguyên c sao cho a2 + b2 + c2 là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho tam giác ABC AB BC CA ngoại tiếp đường tròn tâm I. Lấy E và F lần lượt trên các đường thẳng AC và AB sao cho CB CE BF đồng thời chúng nằm về cùng phía với A so với đường thẳng BC. Các đường thẳng BE và CF cắt nhau tại G. a) Chứng minh rằng bốn điểm C, E, I và G cùng nằm trên một đường tròn. b) Trên đường thẳng qua G và song song với AC lấy điểm H sao cho HG AF đồng thời H nằm khác phía với C so với đường thẳng BG. Chứng minh rằng 1 2 EHG CAB. + Cho đường tròn (O;R) và hai điểm A, B cố định nằm ngoài đường tròn sao cho OA R 2. Điểm C nằm trên đoạn thẳng AO sao cho 2 R OC và điểm M thay đổi trên đường tròn. Giá trị nhỏ nhất của MA + 2MB bằng? + Cho đường tròn tâm O có bán kính OA R, dây cung BC vuông góc với OA tại trung điểm M của đoạn thẳng OA, kẻ tiếp tuyến với đường tròn tại B, tiếp tuyến đó cắt OA tại E. Độ dài đoạn thẳng BE là?
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Sơn La; kỳ thi được diễn ra vào ngày 14 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Sơn La : + Cho tam giác ABC có góc A tù. Vẽ đường tròn O đường kính AB và đường tròn O’ đường kính AC. Đường thẳng AB cắt đường tròn O’ tại điểm thứ hai là D, đường thẳng AC cắt đường tròn O tại điểm thứ hai là E. a) Chứng minh bốn điểm B C D E cùng nằm trên một đường tròn. b) Gọi F là giao điểm thứ hai của hai đường tròn O và O’ (F khác A). Chứng minh ba điểm B F C thẳng hàng và FA là phân giác của góc EFD. c) Gọi H là giao điểm của AB và EF. Chứng minh BH AD AH BD. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d y m x m 2 1 2 và parabol P: 2 y x (m là tham số). a) Tìm tọa độ các giao điểm của d và P khi m 2. b) Tìm m để d và P cắt nhau tại hai điểm phân biệt có hoành độ 1 2 x x sao cho biểu thức 2 2 E x x x x 1 2 1 2 đạt giá trị nhỏ nhất. + Cho 3 số thực dương a b c thỏa mãn 2 2 2 1 1 1 1 a b c. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 2 2 2 2 2 2 b c c a a b P.
Đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 12 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Cho đường tròn (I;r) có hai bán kính IE, IF vuông góc với nhau. Kẻ hai tiếp tuyến với đường tròn (I) tại E và F, cắt nhau tại A. Trên tia đối của tia EA lấy điểm B sao cho EB > r, qua B kẻ tiếp tuyến thứ hai với đường tròn (I). D là tiếp điểm, BD cắt tia AF tại C. Gọi K là giao điểm của AI với FD. 1) Chứng minh hai tam giác IAB và FAK đồng dạng. 2) Qua A kẻ đường thẳng vuông góc với BC, cắt FD tại P. Gọi M là trung điểm của AB, MI cắt AC tại Q. Chứng minh tam giác APQ là tam giác cân. 3) Xác định vị trí của điểm B để chu vi tam giác AMQ đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo r. + Cho a, b, c là các số thực đôi một khác nhau thỏa mãn 3 3 3 a a b b c c 1 3 1 3 1 3. Tính giá trị biểu thức 2 2 2 Q a b c. + Cho các số thực dương x, y, z thỏa mãn 2 2 x y xyz xy yz zx 4 2. Tính giá trị lớn nhất của biểu thức P x y z 1 1.