Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm lớp 12 môn Toán năm học 2017 2018 trường THCS THPT Khai Minh TP. HCM

Nội dung Đề KSCL đầu năm lớp 12 môn Toán năm học 2017 2018 trường THCS THPT Khai Minh TP. HCM Bản PDF Đề khảo sát chất lượng đầu năm lớp 12 năm học 2017 – 2018 môn Toán trường THCS – THPT Khai Minh – TP. HCM gồm 50 câu trắc nghiệm, có đáp án. Trích một số bài toán trong đề : + Cho khối chóp tam giác S.ABC có cạnh đáy là tam giác vuông tại A, AC = a, BC = 2a. Hình chiếu của S trên (ABC) là trung điểm H của BC. Cạnh bên SB tạo với đáy một góc 60 độ.Tính theo a thể tích của khối chóp S.ABC. + Hình chóp S.ABC có SA = SB = SC, đáy tam giác ABC vuông tại A có AB =1, AC = 2, góc giữa mặt phẳng (SAB) và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp. + Điểm trong của khối lăng trụ là điểm: A. Không thuộc khối lăng trụ B. Thuộc khối lăng trụ và thuộc hình lăng trụ C. Thuộc hình lăng trụ D. Thuộc khối lăng trụ nhưng không thuộc hình lăng trụ File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình (mã đề 105); hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Khẳng định nào sau đây sai? A. Đồ thị hàm số y = (1/2)x nhận trục hoành làm đường tiệm cận ngang. B. Hàm số y = 2^x và y = log2x đồng biến trên mỗi khoảng mà hàm số xác định. C. Hàm số y = log1/2x có tập xác định là (0;+vc). D. Đồ thị hàm số y = log2-1x nằm phía trên trục hoành. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0). Gọi (P) là mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại điểm C sao cho tứ diện OABC có thể tích bằng 1/6. Phương trình mặt phẳng (P) là? + Trong tập hợp các số phức, cho phương trình z3 + (1 – 2m)z2 + 2mz + 4m = 0 với tham số m thuộc R. Gọi S là tập hợp các giá trị của m để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập S bằng?
Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng cuối năm môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát cuối năm Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trên tập hợp số phức, xét phương trình 2 z 1 2z m (m là tham số thực). Gọi T là tập hợp tất cả các giá trị của m để phương trình trên có nghiệm z thỏa mãn z 3. Tổng các phần tử của T bằng? + Cho mặt cầu có bán kính S bằng 5. Mặt phẳng P cắt mặt cầu theo giao tuyến là đường tròn C có chu vi bằng. Xét 6 tứ diện có ABCD đáy là tam giác ABC đều nội tiếp đường tròn C còn di D chuyển trên mặt cầu. Giá trị lớn nhất của thể tích S khối tứ diện ABCD bằng? + Có tất cả bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn [0;2] không vượt quá 15?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB. Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3. Tính diện tích tam giác SAB. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 4 4 0 S x y z x y và hai điểm A B 4 2 4 1 4 2. MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u = (0;1;1) và MN 4 2. Tính giá trị lớn nhất của AM BN. + Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả?