Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019 2020 trường Nam Từ Liêm Hà Nội

Nội dung Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019 2020 trường Nam Từ Liêm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019-2020 trường Nam Từ Liêm Hà Nội Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019-2020 trường Nam Từ Liêm Hà Nội Trong tuần vừa qua, trường THCS Nam Từ Liêm - Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán cho học sinh lớp 9 giai đoạn tháng 11 năm học 2019 - 2020. Đây là một cơ hội để học sinh rèn luyện kỹ năng và kiến thức, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề thi khảo sát tháng 11 Toán lớp 9 năm 2019-2020 trường Nam Từ Liêm - Hà Nội bao gồm 5 bài toán tự luận trên 1 trang, thời gian làm bài là 90 phút. Đề thi được soạn theo cấu trúc tương tự như đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội. Một trong những câu hỏi trong đề khảo sát là: "Một chiếc thuyền đi từ vị trí A bên bờ sông này sang vị trí B bên bờ sông kia. Do dòng nước chảy xiết, thuyền đã đi lệch một góc 20° và đến vị trí C. Khoảng cách giữa hai bờ là 160m. Hỏi khoảng cách BC là bao nhiêu?" Đề cũng đưa ra các bài toán khác về hàm số bậc nhất, đường tròn, hình học,... để kiểm tra kiến thức của học sinh. Qua các bài toán này, học sinh được khám phá, rèn luyện tư duy logic và phân tích, chuẩn bị tốt cho các kỳ thi sắp tới. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 trường Trần Quốc Toản - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường TH & THCS Trần Quốc Toản, thành phố Bắc Ninh; đề thi gồm 30 câu trắc nghiệm (03 điểm – 30 phút) và 04 câu tự luận (07 điểm – 60 phút), có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2023 – 2024 trường Trần Quốc Toản – Bắc Ninh : + Giải bài toán sau bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày làm được 600 sản phẩm. Do cải tiến kĩ thuật nên mỗi ngày đã làm được 800 sản phẩm và hoàn thành trước kế hoạch 2 ngày. Tính số sản phẩm tổ phải làm theo kế hoạch. + Cho tam giác ABC vuông tại A có AB AC đường cao AH H BC. a) Chứng minh rằng ABC HAC từ đó suy ra 2 AC HC BC. b) Cho BH cm HC cm 1 4. Tính độ dài các cạnh AC và AH. c) Kẻ BE là đường phân giác trong (E AC) của ABC. Đường thẳng qua C vuông góc với BE tại D và cắt AB tại I. Chứng minh: 2 IA AB AD ID AI. + Cho ABC có AB cm AC cm BC cm 9 12 15. Trên cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM cm AN cm 3 4. Kết luận nào sau đây là sai?
Đề khảo sát Toán 9 đầu năm 2023 - 2024 trường THCS Phúc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2023 – 2024 trường THCS Phúc Lâm, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 đầu năm 2023 – 2024 trường THCS Phúc Lâm – Hà Nội : + Cho biểu thức: P. a) Tìm điều kiện xác định để P có nghĩa. b) Rút gọn P. c) Tính giá trị của P tại x = 3. d) Tìm các giá trị nguyên của x để P có giá trị là một số nguyên. + Một người đi từ A đến B với vận tốc trung bình 15km/h. Lúc về người đó đi với vận tốc 12km/h, nên thời gian đi ít hơn thời gian về 12 phút. Tính độ dài quãng đường AB? + Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt cạnh BC tại D. Kẻ BM và CN vuông góc với AD (M, N thuộc AD). Chứng minh rằng: a) Tam giác BMD đồng dạng với tam giác CND. b) AB/AC = BM/CN. c) 1/DM – 1/DN = 2/AD.
Đề rà soát Toán 9 năm 2022 - 2023 trường THCS Tản Hồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề rà soát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 trường THCS Tản Hồng, huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề rà soát Toán 9 năm 2022 – 2023 trường THCS Tản Hồng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chuyển động xuôi dòng từ A đến B sau đó ngược dòng từ B về A hết tổng cộng 5 giờ. Biết quãng đường sông từ A đến B dài 60 km và vận tốc của dòng nước là 5km/h. Tính vận tốc thực của ca nô (Vận tốc thực của ca nô khi nước đứng yên). + Một quả bóng tennis có đường kính 6,5 cm. Tính diện tích nguyên liệu cần dùng để làm mặt xung quanh của quả bóng (làm tròn đến chữ số thập phân thứ 2, giả thiết rằng nguyên liệu làm các mối nối là không đáng kể và lấy π ≈ 3,14). + Cho tam giác ABC nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AQ của đường tròn (O) cắt cạnh BC tại I. 1) Chứng minh bốn điểm A, F, H, E cùng thuộc một đường tròn. 2) Chứng minh: BAD CAQ. 3) Gọi P là giao điểm của AH và EF. Chứng minh ∆AEP đồng dạng với ABI và PI HQ.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Dịch Vọng, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 180km. Một xe máy khởi hành từ A đến B với vận tốc không đổi. Sau đó 24 phút một ô tô cũng khởi hành từ A nhưng đi với vận tốc lớn hơn vận tốc xe máy là 5km/h nên đã đến B kịp lúc với xe máy. Tính vận tốc của xe máy. + Cột cờ Hà Nội là công trình lịch sử đặc biệt, không chỉ là biểu tượng của Thủ đô thân yêu mà còn là chứng tích cho một thời kháng chiến chống Pháp oanh liệt, dấu ấn kiên cường, bất khuất của các thế hệ con dân đất Hà thành. Vào thời điểm các tia nắng mặt trời tạo với mặt đất một góc 620, bóng của Cột cờ trên mặt đất. + Cho ∆ABC (AC > BC) có ba góc nhọn nội tiếp đường tròn (O). Vẽ các tiếp tuyến với (O) tại A và B, hai tiếp tuyến này cắt nhau tại M. Lấy H là hình chiếu của O trên MC. 1) Chứng minh bốn điểm M, A, O, H cùng thuộc một đường tròn. 2) Chứng minh HM là phân giác của AHB. 3) a) Qua C kẻ đường thẳng song song với AB cắt MA, MB lần lượt tại E và F, nối EH cắt AC tại P. Chứng minh PA.PC = PH.PE.