Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song

Nội dung Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song Bản PDF - Nội dung bài viết Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Tài liệu này bao gồm 22 trang được biên soạn bởi tác giả Toán Họa, tổng hợp kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song trong chương trình Hình học lớp 7 chương 1. Khái quát nội dung tài liệu kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song: BÀI 1. Hai góc đối đỉnh: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh góc kia. Hai góc đối đỉnh thì bằng nhau. Mỗi góc chỉ có một góc đối đỉnh với nó. Hai góc bằng nhau chưa chắc đã đối đỉnh. BÀI 2. Hai góc đối đỉnh: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Qua một điểm cho trước, chỉ có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước. Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng đó tại trung điểm của nó. BÀI 3. Các góc tạo bởi một đường thẳng cắt hai đường thẳng: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Nếu hai đường thẳng cắt một đường thẵng thứ ba và tạo ra các góc so le bằng nhau, thì các điều kiện song song là: Hai góc so le trong còn lại bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 4. Hai đường thẳng song song: Hai đường thẳng song song (trong mặt phẳng) là hai đường thẳng không có điểm chung. Điều kiện để các đường thẳng là song song: Nếu đường thẳng cắt hai đường thẳng khác và tạo ra các góc so le bằng nhau, thì các đường thẳng đó song song. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song. BÀI 5. Tiên đề Ơclit về đường thẳng song song: Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó. Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba, thì các điều kiện là: Hai góc so le trong bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 6. Từ vuông góc tới song song: Nếu hai đường thẳng cùng vuông góc với một đường thẳng thứ ba, thì chúng song song với nhau. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường kia. Hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau. BÀI 7. Định lí: Một tính chất được khẳng định là đúng bằng suy luận gọi là một định lí. Giả thiết của định lí là điều cho biết, kết luận của định lí là điều được suy ra. Chứng minh định lí là dùng luận để từ giả thiết suy ra kết luận. Đề kiểm tra Hình học lớp 7 chương 1: Trên đây là bản tóm tắt về nội dung kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song. Hy vọng thông tin này sẽ giúp bạn hiểu rõ hơn về chủ đề này và áp dụng vào việc học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hai đường thẳng song song, tiên đề Ơ-clit về đường thẳng song song
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai đường thẳng song song, tiên đề Ơ-clit về đường thẳng song song, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa hai đường thẳng song song. + Phát biểu được dấu hiệu nhận biết hai đường thẳng song song. + Phát biểu được tiên đề Ơ-clit về hai đường thẳng song song. Kĩ năng: + Nhận biết được hai đường thẳng song song. + Vẽ được hai đường thẳng song song. + Vận dụng được tính chất của tiên đề Ơ-clit về hai đường thẳng song song. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Chứng minh hai đường thẳng song song. Dạng 2: Vận dụng tiên đề Ơ-clit. Dạng 3: Vận dụng tính chất hai đường thẳng song song để tính số đo góc.
Chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phân biệt được các góc so le trong và góc đồng vị tạo thành bởi một đường thẳng cắt hai đường thẳng. + Nắm vững tính chất về góc so le trong và góc đồng vị. Kĩ năng: + Chỉ ra được các cặp góc so le trong, đồng vị. + Vận dụng được các tính chất về góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Xác định các cặp góc so le trong, cặp góc trong cùng phía, cặp góc đồng vị. Dạng 2: Tính góc.
Chuyên đề hai đường thẳng vuông góc
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa hai đường thẳng vuông góc. + Nắm vững cách vẽ và tính chất về hai đường thẳng vuông góc. + Nắm vững định nghĩa đường trung trực của đoạn thẳng. Kĩ năng: + Vẽ được hai đường thẳng vuông góc; đường trung trực của đoạn thẳng. + Chứng minh được một số bài toán vuông góc đơn giản. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ hình. Dạng 2: Chứng minh hai đường thẳng vuông góc. Dạng 3: Các bài toán vận dụng.
Chuyên đề hai góc đối đỉnh
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai góc đối đỉnh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hai góc đối đỉnh. + Nắm vững tính chất cơ bản của hai góc đối đỉnh. Kĩ năng: + Nhận biết được hai góc đối đỉnh. + Vận dụng được tính chất của hai góc đối đỉnh vào tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết hai góc đối đỉnh. Dạng 2: Tính số đo góc. Dạng 3: Chứng minh hai góc đối đỉnh.