Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ II Toán 11 năm 2017 - 2018 trường THPT Lê Hồng Phong - Khánh Hòa

Đề kiểm tra học kỳ II Toán 11 năm 2017 – 2018 trường THPT Lê Hồng Phong – Khánh Hòa gồm 2 mã đề, mỗi mã đề gồm 2 bài toán tự luận và 40 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, có ma trận đề để học sinh có thể nắm được cấu trúc đề thi, đề có đáp án và lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ II Toán 11 năm 2017 – 2018 : + Đường thẳng được gọi là vuông góc với mặt phẳng nếu: A. nó vuông góc với một đường thẳng nằm trên mặt phẳng. B. nó vuông góc với hai đường thẳng nằm trên mặt phẳng. C. nó vuông góc với ba đường thẳng nằm trên mặt phẳng. D. nó vuông góc với mọi đường thẳng nằm trên mặt phẳng. [ads] + Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 3 có phương trình là y = 3x – 4 thì tiếp tuyến của đồ thị hàm số y = 2x.f(x) tại điểm có hoành độ bằng 3 có phương trình nào trong các phương trình sau? + Cho hình lăng trụ tam giác (xem hình bên), chọn khẳng định sai: A. Hai đáy nằm trên hai mặt phẳng song song. B. Các cạnh bên song song với nhau. C. Hai tam giác đáy bằng nhau. D. Các mặt bên là các hình chữ nhật.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường Quốc tế Á Châu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường TH – THCS – THPT Quốc tế Á Châu, thành phố Hồ Chí Minh.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình 3 2 2 7 5 3 t S t t t trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động (t > 0) và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc của vật tại thời điểm mà vật có vận tốc nhỏ nhất. + Chứng minh phương trình 2 4 2 m m x x mx 4 2 3 0 luôn có nghiệm với mọi giá trị thực của tham số m. + Cho hình vuông ABCD cạnh a. Gọi I, J, K lần lượt là trung điểm các đoạn thẳng AB, BC, CD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại điểm I lấy điểm S sao cho tam giác SAB đều. a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) và tam giác SBC vuông. b) Chứng minh đường thẳng DJ vuông góc với mặt phẳng (SIC). c) Xác định và tính góc giữa đường thẳng SD với mặt phẳng (SAB). d) Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Lý Thường Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lý Thường Kiệt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Lý Thường Kiệt – TP HCM : + Cho hàm số 2 x y x có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(1;1). + Cho đường cong 3 1 1 x C y x. Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến song song với đường thẳng d y x 4 1. + Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a; H là trung điểm của AB; SH vuông góc với mặt phẳng (ABCD) 6 2 a SA. a) Chứng minh: SBC SAB. b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Gọi M là trung điểm SA. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Tam Phú - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Tam Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Tam Phú – TP HCM : + Tính đạo hàm các hàm số sau? + Viết phương trình tiếp tuyến với đường cong 3 2 C y x x 2 1 tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SA a 3 SA ABCD a) Chứng minh: SAC SBD. b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Gọi I là hình chiếu của A lên SC. Từ I lần lượt vẽ các đường thẳng song song với SB, SD cắt BC, CD tại P, Q. Gọi E là giao điểm của PQ và AB. Tính khoảng cách từ E đến mặt phẳng (SBD).