Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017 2018 sở GD và ĐT Hải Dương

Nội dung Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017 2018 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017-2018 sở GD và ĐT Hải Dương Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017-2018 sở GD và ĐT Hải Dương Đề thi chọn HSG tỉnh Toán lớp 10 THPT năm 2017-2018 sở GD và ĐT Hải Dương là bài kiểm tra đánh giá năng lực toán học của học sinh trung học phổ thông. Đề thi gồm 5 bài toán tự luận, thời gian làm bài là 180 phút. Nội dung đề bao gồm các chủ đề cơ bản như hàm số và đồ thị, phương trình - bất phương trình - hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min - max. Trong kỳ thi, học sinh sẽ phải giải các bài toán phức tạp, đòi hỏi sự logic, kiến thức và kỹ năng tính toán chính xác. Đề thi diễn ra vào ngày 04/04/2018 và có sẵn lời giải chi tiết để học sinh tham khảo sau khi thi. Trích dẫn một số bài toán trong đề thi: Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC. Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x - 2y + 1 = 0. Biết phương trình đường thẳng BD là x - 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất? Đề thi chọn HSG tỉnh lớp 10 môn Toán là cơ hội để học sinh thử thách và nâng cao kiến thức, kỹ năng toán học của mình. Mong rằng những bài toán này sẽ giúp học sinh phát triển khả năng giải quyết vấn đề và tư duy logic.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 10 năm 2012 - 2013 trường THPT Thuận An - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi Toán 10 năm học 2012 – 2013 trường THPT Thuận An, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 năm 2012 – 2013 trường THPT Thuận An – TT Huế : + Cho phương trình 2 mx m x m 2 1 2 0 m là tham số 1. Tìm m để phương trình đã cho có một nghiệm. 2. Tìm m để phương trình đã cho có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm M, N, P thỏa mãn AM AB BC 2 BN BC AC 3 CP CA 2. Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm. + Gọi a, b, c là độ dài ba cạnh của tam giác abc hhh là độ dài ba đường cao tương ứng ba cạnh đó; r là bán kính đường tròn nội tiếp tam giác đó.
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc. Đề thi có mã đề 101, hình thức là trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút, không kể thời gian giao đề. Đề thi đã được trang bị đáp án. Đề thi bắt đầu bằng một bài toán liên quan đến một công ti sản xuất và bán máy tính, trong đó yêu cầu học sinh tìm ra số năm mà công ti bán được số lượng máy tính vượt mức 179 nghìn chiếc. Bài toán thứ hai liên quan đến việc tính toán học phí của một khóa học dựa trên số lượng học viên đăng kí. Cuối cùng, bài toán thứ ba đưa ra một tình huống về một lớp học gồm các học sinh giỏi Toán, Văn, và Anh, yêu cầu học sinh tính số học sinh giỏi ít nhất hai môn. Đề thi không chỉ giúp học sinh kiểm tra kiến thức mà còn khuyến khích họ tư duy sáng tạo và giải quyết vấn đề theo cách logic. Hy vọng rằng đề thi sẽ là cơ hội tốt để các em thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em có kết quả tốt trong kỳ thi sắp tới!
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 bài thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT Nguyễn Thượng Hiền, thành phố Hồ Chí Minh (lần thứ 26). Bài thi bao gồm hai phần: phần chung dành cho tất cả các thí sinh và phần riêng dành cho học sinh lớp 10 chuyên Toán và không chuyên Toán. Trích dẫn một số câu hỏi từ đề thi HSG Toán lớp 10 năm 2022-2023 trường THPT Nguyễn Thượng Hiền - TP HCM: 1. Trong lớp 10A có 14 học sinh giỏi Toán, 10 học sinh giỏi Hóa, 8 học sinh giỏi Lý. Có bao nhiêu học sinh giỏi cả ba môn? Phân chia tất cả học sinh thành các tổ có số lượng thành viên bằng nhau. Việc này có thể thực hiện được không? Vì sao? 2. Xét tam giác NTH đều cạnh a. Gọi (X) là tập hợp tất cả điểm M thỏa mãn điều kiện MN.MH - MN.MT = 2MN^2. Hãy tính diện tích của tập hợp (X). 3. Cho tứ giác ABCD nội tiếp có các cặp cạnh đối không song song. Chứng minh rằng hai đường thẳng EK và FK vuông góc, với E là giao điểm của AB và CD, F là giao điểm của AC và BD, K là điểm giao của đường tròn ngoại tiếp các tam giác AFD và BFC.
Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 lần 1 trường chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 của trường THPT chuyên KHTN, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 08 tháng 08 năm 2022. Dưới đây là một số câu hỏi trong đề thi HSG Toán lớp 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội: 1. Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n^2 – 149 là số nguyên tố. 2. Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Hỏi giá trị nhỏ nhất có thể có của a23? 3. Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích. Hy vọng rằng các em học sinh sẽ nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!