Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển Toán năm 2022 2023 trường Phổ thông Năng khiếu TP HCM

Nội dung Đề chọn đội tuyển Toán năm 2022 2023 trường Phổ thông Năng khiếu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán năm học 2022 – 2023 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển Toán năm 2022 – 2023 trường Phổ thông Năng khiếu – TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn x > y > 2 và x^y – x = y^x – y. + Cho tam giác ABC nội tiếp đường tròn (O) có B, C cố định (BC không đi qua O), A là điểm thay đổi trên cung lớn BC. Gọi I, M, N là trung điểm của BC, CA và AB. Đường tròn qua M, tiếp xúc BC tại B và đường tròn qua N, tiếp xúc BC tại C lần lượt cắt IM và IN tại E và F. Gọi D là giao điểm của BE, CF. a) Chứng minh AD đi qua một điểm cố định. b) Gọi K là giao điểm của AD với EF. Chứng minh K thuộc một đường tròn cố định. + Với n nguyên dương, một tập hợp B = {b1, b2 … bn} gồm các số nguyên dương được gọi là “tốt” nếu tồn tại n tập hợp C1, C2 … Cn thỏa mãn đồng thời các điều kiện sau: Với mọi i thuộc {1, 2 … n}, các tập hợp Ci gồm bi số nguyên liên tiếp. Với mọi i thuộc {1, 2 … n}, nếu đặt ai là tổng tất cả các phần tử của Ci thì a1 + a2 + … + an = 0. a) Chứng minh rằng nếu B chứa ít nhất một số lẻ thì B là tập hợp tốt. b) Hỏi có bao nhiêu tập con khác rỗng của {1, 2 … 100} là tập tốt?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GDĐT Cao Bằng
Ngày …/09/2019, sở Giáo dục và Đào tạo tỉnh Cao Bằng tổ chức kỳ thi chọn đội tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2019 – 2020. Đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GD&ĐT Cao Bằng : + Cho tam giác ABC nội tiếp đường tròn (O) có trung điểm các cạnh AC, AB lần lượt là M và N. Đường thẳng đi qua A lần lượt vuông góc với AC, AB cắt đường thẳng BC tại X và Y. Gọi XM giao AB tại P, YN giao AC tại Q. Chứng minh rằng O, P, Q thẳng hàng. [ads] + Chứng minh rằng trong 5 số nguyên dương bất kì, luôn tồn tại 3 số có tổng chia hết cho 3. + Chứng minh rằng trong 13 ước nguyên dương của 6^2019, luôn tồn tại 3 số có tích là lập phương của một số tự nhiên.
Đề thi chọn HSG Toán 12 năm 2019 - 2020 trường chuyên Lê Quý Đôn - Quảng Trị
Vừa qua, trường THPT chuyên Lê Quý Đôn, trực thuộc sở Giáo dục và Đào tạo tỉnh Quảng Trị đã tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Toán 12 cấp tỉnh năm học 2019 – 2020. Đề thi chọn HSG Toán 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có hướng dẫn giải. Trích dẫn đề thi chọn HSG Toán 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị : + Từ các chữ số 0, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số chẵn, có ba chữ số khác nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD và các điểm M, N thỏa mãn: MA + 2MC = 0, 2NA + ND = 0. a) Chứng minh tam giác BMN vuông cân. b) Tìm tọa độ điểm A, biết N(2;2), đường thẳng BM có phương trình x – 2y – 3 = 0 và điểm A có hoành độ nhỏ hơn 2. + Cho hình chóp S.ABC có SA = SB = SC và đáy là tam giác vuông cân với cạnh huyền AB = a√2. Mặt bên (SBC) hợp với mặt đáy một góc p sao cho cosp= 1/√13. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng AB và SC.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GDĐT Bình Phước
Ngày 22 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 năm 2019 môn Toán, với mục đích tuyên dương, khích lệ các em trong quá trình học tập, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Bình Phước, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia trong năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GD&ĐT Bình Phước gồm 01 trang với 06 bài toán tự luận, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GD&ĐT Bình Phước : + Có 27 tấm thẻ được đánh các số tự nhiên từ 1 đến 27 (mỗi thẻ đánh đúng một số). Rút ngẫu nhiên ba thẻ. Tính xác suất để rút được ba thẻ mà tổng các số trên ba thẻ chia hết cho 3. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy. Cho tam giác ABC nội tiếp đường tròn tâm I(-2;-1), góc AIB = 90 độ, H(-1;-3) là hình chiếu vuông góc của A lên BC và K(−1;2) là một điểm thuộc đường thẳng AC. Tìm tọa độ các đỉnh A, B, C. Biết rằng điểm A có hoành độ dương. + Cho tam giác ABC (AB < AC). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm D. Gọi E là giao điểm của đường trung trực của đoạn thẳng AC và đường phân giác ngoài của góc A. Gọi H là giao điểm của DE và AC. Đường thẳng qua H và vuông góc với DE cắt AE tại F. Đường thẳng qua F vuông góc với AE cắt AB tại K. Chứng minh rằng KH song song BC.
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Ninh Bình
Ngày 11 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình với 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình : + Cho tam giác nhọn ABC, đường cao AD (D thuộc BC) và hai điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC. Điểm P chuyển động trên đoạn thẳng MN. Lấy các điểm E, F sao cho EP ⊥ AC, EC ⊥ BC, FP ⊥ AB, FB ⊥ BC. a) Gọi I là giao của EF và AD. Chứng minh rằng I cố định khi P chuyển động trên đoạn MN. b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. Chứng minh rằng đường trung trực của đoạn thẳng BC đi qua trung điểm của đoạn thẳng PQ. [ads] + Cho số nguyên dương n và tập hợp S = {1;2 … n}. Tìm số các tập con của S không chứa hai số nguyên dương liên tiếp. + Xét phương trình: x^n = x^2 + x + 1, n thuộc N, n > 2. a) Chứng minh rằng với mỗi số tự nhiên n lớn hơn 2 phương trình trên có đúng một nghiệm dương duy nhất. b) Gọi xn là nghiệm dương duy nhất của phương trình trên. Tính limxn.