Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : BÀI 1 . GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Đơn vị đo độ và rađian 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 6. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 7. Dạng 3. Độ dài của một cung tròn 8. 1. Phương pháp giải 8. 2. Các ví dụ minh họa 8. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA BÀI TẬP 9. D. BÀI TẬP TRẮC NGHIỆM 15. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 25. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 25. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 28. Dạng 1. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 28. 1. Phương pháp giải 28. 2. Các ví dụ minh họa 28. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 31. 1. Phương pháp giải 31. 2. Các ví dụ minh họa 31. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 33. 1. Phương pháp giải 33. 2. Các ví dụ minh họa 33. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 36. D. BÀI TẬP TRẮC NGHIỆM 41. BÀI 3 . CÁC CÔNG THỨC LƯỢNG GIÁC 66. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 66. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 66. Dạng 1. Sử dụng công thức cộng 66. 1. Phương pháp giải 66. 2. Các ví dụ minh họa 67. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 71. 1. Phương pháp 71. 2. Các ví dụ minh họa 72. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 76. 1. Phương pháp giải. 76. 2. Các ví dụ minh họa 76. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 81. 1. Phương pháp giải 81. 2. Các ví dụ điển hình 81. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 84. 1. Phương pháp giải 84. 2. Các ví dụ minh họa 84. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 91. D. BÀI TẬP TRẮC NGHIỆM 98. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 127. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 127. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 130. Dạng 1. Tìm tập xác đinh của hàm số 130. 1. Phương pháp 130. 2. Các ví dụ mẫu 131. Dạng 2. Xét tính chẵn lẻ của hàm số 133. 1. Phương pháp 133. 2. Các ví dụ mẫu 133. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 136. 1. Phương pháp 136. 2. Ví dụ mẫu 136. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 139. 1. Phương pháp 139. 2. Ví dụ mẫu 140. Dạng 5. Đồ thị của hàm số lượng giác 141. 1. Phương pháp 141. 2. Các ví dụ mẫu 142. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 148. BÀI TẬP CUỐI CHƯƠNG 1 178. CÂU HỎI TRẮC NGHIỆM 178. BÀI TẬP TỰ LUẬN 181. BÀI TẬP TỔNG ÔN CHƯƠNG 1 185. PHẦN 1. TRẮC NGHIỆM 185. PHẦN 2. TỰ LUẬN 193.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 52 trang phân dạng và tuyển chọn các bài tập chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1. 1. HÀM SỐ LƯỢNG GIÁC Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tính chẵn lẻ của hàm số. Dạng 3. Chu kỳ của hàm số lượng giác. Dạng 4. Chứng minh T0 là chu kì của một hàm số lượng giác. Dạng 5. Bảng biến thiên và đồ thị của hàm số lượng giác. Dạng 6. Sử dụng phép biến đổi đồng nhất và tính chất của hàm số lượng giác. Dạng 7. Các bài toán sử dụng bất đẳng thức đã biết để tìm giá trị lớn nhất và giá trị nhỏ nhất. Dạng 8. Các bài toán sử dụng tính đồng biến nghịch biến. Dạng 9. Các bài toán liên quan đến asin x + bcos x = c. 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN CÓ ĐIỀU KIỆN [ads] 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 3.1. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 1. Một số dạng cơ bản phương trình bậc hai đối với một hàm số lượng giác. 3.2 Phương trình bậc nhất đối với sin và cos. Dạng 2. Phương trình bậc nhất đối với sin và cos. 3.3 Phương trình thuần nhất đối với sin và cos. Dạng 3. Phương trình thuần nhất đối với sin và cos. 4. PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Dạng 1. Phương pháp đưa về tổng bình phương. Dạng 2. Phương pháp đối lập. Dạng 3. Phương pháp chứng minh nghiệm duy nhất. Dạng 4. Phương pháp đặt ẩn phụ. Dạng 5. Phương pháp đưa về hệ phương trình. Dạng 6. Một số phương trình lượng giác có cách giải đặc biệt. 4.1 Phương trình lượng giác có nghiệm trên khoảng, đoạn. 4.2 Dạng toán khác về phương trình lượng giác thường gặp.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Đặng Thị Oanh
Tài liệu gồm 47 trang tóm gọn lý thuyết và bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi cô giáo Đặng Thị Oanh. §1. HÀM SỐ LƯỢNG GIÁC 1. Tập xác định của hàm số lượng giác. 2. Chu kỳ của hàm số lượng giác. 3. Tập giá trị của hàm số lượng giác. 4. Tính chẵn, lẻ của hàm số lượng giác. 5. Tập đơn điệu của hàm số lượng giác. 6. Đồ thị của hàm số lượng giác. 7. Bài tập trắc nghiệm hàm số lượng giác. §2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] §3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 1. Phương trình bậc hai đối với một hàm số lượng giác. 2. Phương trình bậc nhất đối với sin x và cos x. 3. Phương trình đẳng cấp bậc hai. 4. Phương trình đối xứng. 5. Phương trình dạng khác. 6. Bài tập trắc nghiệm. ĐỀ THI ĐẠI HỌC, CAO ĐẴNG VÀ TNPT CÁC NĂM ÔN TẬP CHƯƠNG I
321 bài toán trắc nghiệm phương trình lượng giác thường gặp - Trần Tuấn Huy
Tài liệu gồm 36 trang được biên soạn bởi thầy Trần Tuấn Huy tuyển chọn 321 bài toán trắc nghiệm phương trình lượng giác thường gặp có đáp án. Các dạng toán được đề cập trong tài liệu : + Loại 1. Phương trình bậc nhất đối với một hàm số lượng giác. + Loại 2. Phương trình bậc cao đối với sinx. + Loại 3. Phương trình bậc cao đối với cosx. + Loại 4. Phương trình bậc cao đối với sinx và cosx. + Loại 5. Phương trình bậc cao đối với tanx và cotx. + Loại 6. Phương trình đẳng cấp. + Loại 7. Phương trình dạng asinx + bcosx = c. + Loại 8. Phương trình đối xứng và phản đối xứng. + Loại 9. Phương trình lượng giác chứa ẩn ở mẫu. + Loại 10. Phương trình lượng giác có chứa tham số. + Loại 11. Một số dạng toán khác.
Trắc nghiệm lượng giác vận dụng cao - Nguyễn Minh Tuấn
giới thiệu đến thầy, cô cùng các em học sinh chuyên đề trắc nghiệm lượng giác vận dụng cao do tác giả Nguyễn Minh Tuấn biên soạn, tài liệu gồm 68 trang tuyển chọn và giải chi tiết 114 câu hỏi và bài tập hàm số lượng giác và phương trình lượng giác nâng cao với đầy đủ các dạng bài khác nhau. Nội dung tài liệu : + Sử dụng lượng giác: Nêu các ứng dụng của lượng giác trong khoa học và đời sống, để bạn đọc hiểu được tầm quan trọng của lượng giác, từ đó kích thích hứng thú học chuyên đề lượng giác. + Những gì bạn học trong lượng giác?: Nêu các nội dung kiến thức bạn đọc cần nắm sau khi học chương lượng giác. + Lời khuyên cho việc học lượng giác: Tác giả Nguyễn Minh Tuấn đưa ra các lời khuyên về việc học lượng giác sao cho hiệu quả, nắm bắt nhanh chóng và tránh các sai lầm thường gặp. + Bài tập tổng hợp: Tuyển chọn 114 bài toán trắc nghiệm nâng cao hàm số lượng giác và phương trình lượng giác có lời giải chi tiết, các bài toán được trích dẫn chủ yếu từ các đề thi thử Toán. Xem thêm : Bài tập nhị thức Niu-tơn vận dụng cao – Nguyễn Minh Tuấn