Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng môn Toán lớp 9 tháng 9 năm học 2023 – 2024 tại trường THCS Lê Ngọc Hân, Hà Nội. Đề thi sẽ có hình thức tự luận, thời gian làm bài là 90 phút. Dưới đây là một số bài toán trích dẫn từ Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân - Hà Nội: Bài 1: Giải bài toán bằng cách lập phương trình: Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi đi người ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB. Bài 2: Bài toán thực tế: Khi mặt trời chiếu qua đỉnh ngọn cây thì góc tạo bởi tia nắng mặt trời với mặt đất là 29° và bóng cây trên mặt đất là 16m. Tính chiều cao của cây (làm tròn đến hàng đơn vị). Bài 3: Bài toán thực tế: Khúc sông rộng 300m, nước chảy xiết. Một con thuyền xuất phát từ bến A đi sang bờ bên kia. Do bị nước đẩy nên con thuyền đi theo đường AB. Biết CAB = 60° và hai bờ sông song song. Tính quãng đường AB. Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh ôn tập kiến thức một cách hiệu quả và tự tin hơn trước kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả tốt! Xin cảm ơn.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.
Đề thi HSG Toán 9 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.
Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.