Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Chào đón đến với Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 do Phòng Giáo dục và Đào tạo Yên Phong, Bắc Ninh tổ chức. Đề thi này sẽ diễn ra vào ngày 14 tháng 01 năm 2023, dành cho các học sinh lớp 9. Trích dẫn Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023: Tìm tất cả các số nguyên dương a, b sao cho a + b^2 chia hết cho a^2b - 1. Cho các đường thẳng: (d1): 2x + y = 6; (d2): 3x + y = 10; (d3): (2m + 1)x + 2y = m + 7. Tìm các giá trị của m để các đường thẳng trên đồng quy tại một điểm. Cho đường tròn (O; R) và một điểm A nằm bên ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của (O; R). Từ B vẽ đường kính BD của (O; R), đường thẳng AD cắt (O; R) tại các điểm E (khác điểm D), gọi H là giao điểm của OA và BC. Chứng minh AE.AD = AH.AO. Qua O vẽ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh rằng FD là tiếp tuyến của (O; R). Đường thẳng đi qua trung điểm I của đoạn thẳng AB vuông góc với cạnh OA tại M cắt đường thẳng DF tại N. Tam giác AND là tam giác gì? Vì sao? Trên bảng có các số tự nhiên từ 1 đến 2022, người ta làm như sau: Lấy ra hai số bất kì và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 2 được không? Giải thích? Hy vọng rằng các em học sinh sẽ học tập và ôn tập chăm chỉ để đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Bến Tre; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày … tháng 12 năm 2022. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Tre : + Cho biểu thức: A. a) Chứng minh rằng: A > 4. b) Tìm các giá trị của a để biểu thức 6/A nhận giá trị nguyên. + Tìm tất cả các số tự nhiên n để B = n(n + 1)(n + 2)/6 + 1 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh: BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt các đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP = MQ.
Đề thi chọn HSG tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi chọn HSG tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y > 1. + Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP. + Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n > 1). Chứng minh rằng: P không phải là số chính phương.
Đề thi HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận (theo điểm số), thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 20 tháng 10 năm 2022. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một cây cau có chiều cao 7m. Để hái một buồn cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Cho tam giác ABC vuông tại A AB AC kẻ đường cao AH của ABC. Gọi D và E là hình chiếu của H trên AB và AC. 1) Cho AB cm 6 và HC cm 6 4. Tính BC và AC. 2) Chứng minh: 3 DE BC BD CE. 3) Đường thẳng qua B vuông góc với BC cắt HD tại M; Đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh M A N thẳng hàng. + Cho đường tròn O 2 AB là một dây của đường tròn có độ dài là 2. Khoảng cách từ tâm O đến AB có giá trị là?
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thị xã năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thái Hòa, tỉnh Nghệ An. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thái Hòa – Nghệ An : + Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu A. + Cho tam giác ABC nhọn, có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M, N lần lượt là hình chiếu của điểm D trên các đường thẳng BE, CF, AB, AC a) Chứng minh: HI.HB = HK.HC b) Chứng minh: IK // EF và bốn điểm I, K, M, N thẳng hàng. c) Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.