Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích đa thức thành nhân tử

Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Chuyên đề thể tích của hình hộp chữ nhật
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề thể tích của hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc. 2. Công thức tính diện tích, thể tích của hình hộp chữ nhật. B. Phương pháp giải toán Dạng toán 1. Quan hệ vuông góc trong không gian. Dạng toán 2. Diện tích và thể tích của hình hộp. C. Phiếu bài tự luyện
Chuyên đề thể tích của hình hộp chữ nhật
Nội dung Chuyên đề thể tích của hình hộp chữ nhật Bản PDF - Nội dung bài viết Chuyên đề thể tích của hình hộp chữ nhật Chuyên đề thể tích của hình hộp chữ nhật Tài liệu này bao gồm 16 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến chuyên đề thể tích của hình hộp chữ nhật. Đồng thời, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, kèm theo đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. Trong tài liệu, có các phần sau: A. Bài giảng củng cố kiến thức nền: Đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc. Công thức tính diện tích, thể tích của hình hộp chữ nhật. B. Phương pháp giải toán: Dạng Toán lớp 1: Quan hệ vuông góc trong không gian. Dạng Toán lớp 2: Diện tích và thể tích của hình hộp. C. Phiếu bài tự luyện Tài liệu này cung cấp kiến thức và bài tập thực hành đa dạng để học sinh ôn tập và nắm vững chuyên đề thể tích của hình hộp chữ nhật, giúp họ chuẩn bị tốt cho bài kiểm tra và nâng cao kỹ năng giải toán trong chương trình học.