Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và B); kỳ thi sẽ diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Một số câu hỏi trích dẫn từ đề học sinh giỏi cấp tỉnh Toán lớp 9 Nghệ An 2022-2023: + Cho các số thực dương x, y, z thỏa mãn x2 - y2 + z2 = xy + 3yz + zx. Hãy tìm giá trị lớn nhất của biểu thức P. + Trên một khu đất hình chữ nhật kích thước 100m x 120m, người ta muốn xây một sân bóng nhân tạo có nền đất hình chữ nhật kích thước 25m x 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng dù đã xây trước 9 bồn hoa ở các vị trí như thế nào. Hãy tham gia thử thách và chinh phục các thí nghiệm thú vị từ bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Oai – Hà Nội.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.