Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề kiểm tra cuối học kì 2 Toán 8 Cánh Diều

Tài liệu gồm 209 trang, tuyển tập 10 đề kiểm tra cuối học kì 2 môn Toán 8 bộ sách Cánh Diều (CD); các đề được biên soạn theo hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Ma trận 10 đề kiểm tra cuối học kì 2 Toán 8 Cánh Diều: 1 Một số yếu tố thống kê và xác suất. + Một số yếu tố thống kê. + Một số yếu tố xác suất. 2 Phương trình bậc nhất một ẩn. + Phương trình bậc nhất một ẩn và ứng dụng. 3 Tam giác đồng dạng. Hình đồng dạng. + Định lí Thalès trong tam giác. + Hình đồng dạng. Lưu ý : – Các câu hỏi trắc nghiệm khách quan là các câu hỏi ở mức độ nhận biết và thông hiểu, mỗi câu hỏi có 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng. – Các câu hỏi tự luận là các câu hỏi ở mức độ thông hiểu, vận dụng và vận dụng cao. – Số điểm tính cho 1 câu trắc nghiệm là 0,25 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Đức Phổ Lâm Đồng
Nội dung Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016 2017 trường THCS Đức Phổ Lâm Đồng Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Đức Phổ Lâm Đồng Đề thi học kì 2 (HK2) lớp 8 môn Toán năm học 2016-2017 trường THCS Đức Phổ Lâm Đồng Đề thi học kỳ 2 môn Toán lớp 8 năm học 2016-2017 tại trường THCS Đức Phổ - Lâm Đồng bao gồm 10 bài toán tự luận, kèm theo lời giải chi tiết. Dưới đây là một số bài toán trong đề: Bài 1: Xác định hệ số a, b của phương trình bậc nhất 2x - 3 = 0. Bài 2: Cho hình lăng trụ đứng có đáy là tam giác đều cạnh 3cm và chiều cao 5cm. Tính diện tích xung quanh của hình lăng trụ đó. Bài 3: Một người đi xe máy từ điểm A đến điểm B với vận tốc trung bình là 50km/h. Khi trở về, người đó đi với vận tốc trung bình là 40km/h, nên thời gian trở về nhiều hơn thời gian đi là 30 phút. Tính độ dài quãng đường AB. Đề thi nêu qua một số bài toán đặc trưng trong đề và bao gồm lời giải chi tiết để học sinh nắm vững các phương pháp giải toán. Điều này giúp học sinh hiểu rõ từng bước giải quyết vấn đề và áp dụng vào các bài tương tự.