Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng phương pháp tọa độ để giải bài toán hình học không gian - Cao Văn Tuấn

Các em học sinh nên nhớ rằng “Không có phương pháp giải nào là vạn năng”, do đó các em phải không ngừng luyện tập để tạo ra sợi dây liên kết giữa các phần kiến thức của mình, khi đó các em mới có thể vận dụng linh hoạt các phương pháp sao cho bài giải của mình khoa học nhất, hay nhất. Đối với một số loại hình chóp, hình lăng trụ trong một số bài toán ta có thể sử dụng việc đặt một hệ trục tọa độ thích hợp, để chuyển từ việc giải hình học không gian tổng hợp thuần túy (mà việc này có thể gặp nhiều khó khăn trong dựng hình, tính toán với các em học sinh) sang việc tính toán dựa vào tọa độ. Cách giải bài toán như vậy gọi là phương pháp tọa độ hóa. Đối với phương pháp tọa độ hóa, việc tính toán có thể sẽ dài dòng và phức tạp hơn phương pháp hình học không gian thuần túy, tuy nhiên cách giải này thực sự rất hữu ích cho nhiều bạn học sinh mà việc nắm vững những phương pháp trong cách giải hình học không gian còn yếu hoặc những bài toán hình không gian về khoảng cách khó; về xác định GTLN, GTNN; các bài toán về quỹ tích điểm … Để có thể làn tốt được các bài toán giải bằng phương pháp tọa độ hóa thì các em học sinh phải nắm chắc các kiến thức (cụ thể là các công thức tính) của phần “Phương pháp tọa độ trong không gian” và những kiến thức cơ bản nhất của hình học không gian. [ads] Sau đây thầy sẽ trình bày cụ thể phương pháp Ứng dụng phương pháp tọa độ để giải toán hình học không gian: + Bước 1: Chọn hệ trục tọa độ Oxyz trong không gian: Vì Ox, Oy, Oz vuông góc với nhau từng đôi một nên nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. + Bước 2: Suy ra tọa độ của các đỉnh, điểm trên hệ trục tọa độ vừa ghép. + Bước 3: Sử dụng các kiến thức về tọa độ không gian để giải quyết bài toán. Đối với các công thức tính về vector, ta có thể sử dụng máy tính Casio để tăng tốc độ tính toán. Các em lưu ý rằng chúng ta có thể tọa độ hóa một khối đa diện bất kỳ. Chỉ cần chúng ta xác định được đường cao của khối đa diện đó và thông thường trên lý thuyết ta đều đặt gốc tọa độ là chân đường cao của khối đa diện; trục cao (trục Oz) là đường cao, sau đó ta dựng hai tia còn lại. Nhưng trong thực hành giải toán chúng ta căn cứ tùy bài toán để đặt hệ trục miễn sao chúng ta có thể tìm các tọa độ các đỉnh liên quan đến hình khối cần tính có thể tìm được một cách dễ dàng hoặc không quá phức tạp.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.
Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.
Bài toán phương trình mặt cầu - Diệp Tuân
Tài liệu gồm 81 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình mặt cầu trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình mặt cầu – Diệp Tuân: Dạng 1 . Xác định tâm và bán kính mặt cầu cho trước. Dạng 2 . Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. + Bài toán 1. Phương trình mặt cầu tâm I và đi qua điểm A. + Bài toán 2. Phương trình mặt cầu đường kính AB. + Bài toán 3. Mặt cầu tâm I(a;b;c) tiếp xúc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 4. Mặt cầu ngoại tiếp tứ diện ABCD (đi qua bốn điểm A, B, C, D). + Bài toán 5. Mặt cầu đi qua A, B, C và tâm I thuộc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 6. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d. + Bài toán 7. Mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B phân biệt. + Bài toán 8. Mặt cầu (S) có tâm I và tiếp xúc với mặt cầu (T) cho trước. + Bài toán 9. Mặt cầu (S’) đối xứng với mặt cầu (S) qua mặt phẳng (P). + Bài toán 10. Mặt cầu (S’) đối xứng mặt cầu (S) qua đường thẳng d. + Bài toán 11. Tìm tiếp điểm H là hình chiếu của tâm I trên mặt phẳng (P). + Bài toán 12. Tìm bán kính r và tâm H đường tròn giao tuyến của mặt phẳng và mặt cầu. + Bài toán 13. Tập hợp điểm và bài toán tiếp tuyến.
Bài toán phương trình đường thẳng - Diệp Tuân
Tài liệu gồm 132 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình đường thẳng trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình đường thẳng – Diệp Tuân: Dạng 1 . Viết phương trình đường thẳng. 1.Phương pháp chung. 2. Bài tập minh họa. 3. Một số kỹ thuật lập phương trình đường thẳng đặc biệt. + Kỹ thuật điểm M thuộc đường thẳng d. + Kỹ thuật lập hai mặt phẳng cắt nhau theo giao tuyến là đường thẳng d. Dạng 2 . Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng.  + Bài toán 1. Tìm hình chiếu của điểm A(xA;yA;zA) xuống đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct, suy ra điểm đối xứng A’ của A qua d. + Bài toán 2. Tìm hình chiếu của đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct xuống mặt phẳng (P): Ax + By + Cz + D = 0. Dạng 3 . Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Bài toán 1. Viết phương tình đường phân giác trong và ngoài của tam giác ABC. + Bài toán 2. Viết phương tình đường phân giác góc nhọn và góc tù của hai đường thẳng d1 và d2 cắt nhau tại điểm A. Dạng 4 . Một số bài toán liên quan đến góc, khoảng cách và tương giao. + Vị trí tương đối của đường thẳng với mặt phẳng. + Giao điểm giữa đường thẳng và mặt phẳng. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng với mặt phẳng. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách của hai đường thẳng chéo nhau. + Khoảng cách giữa đường thẳng và mặt phẳng song song.