Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Oai – Hà Nội.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.