Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán cấp thành phố năm 2017 2018 phòng GD ĐT TP Bắc Giang

Nội dung Đề HSG lớp 8 môn Toán cấp thành phố năm 2017 2018 phòng GD ĐT TP Bắc Giang Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 cấp thành phố năm 2017-2018 phòng GD&ĐT TP Bắc Giang Đề HSG Toán lớp 8 cấp thành phố năm 2017-2018 phòng GD&ĐT TP Bắc Giang Chào quý thầy cô và các em học sinh lớp 8, Sytu xin giới thiệu đến các bạn đề thi HSG Toán lớp 8 cấp thành phố năm 2017-2018 phòng GD&ĐT TP Bắc Giang. Đề thi này bao gồm đề thi, đáp án chi tiết và lời giải, cung cấp hướng dẫn để chấm điểm. Trích dẫn một số câu hỏi từ đề thi: 1. Trong hình vuông ABCD có đường chéo AC và BD cắt nhau tại O, chúng ta cần chứng minh tam giác MON vuông cân và MN song song với BE. 2. Chứng minh rằng CK vuông góc với BE trong trường hợp nào. 3. Cho x, y là số hữu tỷ khác 1, hãy chứng minh rằng M = x^2 + y^2 - xy là bình phương của một số hữu tỷ. Ngoài ra, đề thi còn yêu cầu tìm tất cả các cặp số nguyên (x; y) thỏa mãn điều kiện nào đó. Hãy thử sức mình với đề thi này để kiểm tra kiến thức và kỹ năng của mình trong môn Toán. Chúc các em học sinh đạt kết quả tốt!

Nguồn: sytu.vn

Đọc Sách

Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc
Nội dung Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi có 10 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn Đề HSG huyện Toán lớp 8 vòng 2 năm 2022 - 2023 phòng GD&ĐT Lập Thạch - Vĩnh Phúc: 1. Biết rằng đa thức \( f(x) \) khi chia cho \( x - 2 \) thì được số dư là 6067; khi chia cho \( x + 3 \) thì được số dư là -4043. Tìm đa thức dư khi chia đa thức \( f(x) \) cho đa thức \( x² + x - 6 \). 2. Cho hình vuông \( ABCD \) có cạnh bằng 8. Trên cạnh \( BC \), lấy điểm M sao cho \( BM = 5 \). Gọi N là giao điểm của đường thẳng \( CD \) và đường thẳng vuông góc với \( AM \) tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. 3. Cho hình vuông \( ABCD \) có cạnh bằng a. Trên cạnh \( AD \) lấy điểm M sao cho \( AM = 3MD \). Kẻ tia \( BX \) cắt cạnh \( CD \) tại I sao cho \( ABM = MBI \). Kẻ tia phân giác của \( CBI \), tia này cắt cạnh \( CD \) tại N. a) Chứng minh rằng: \( MN = AM + NC \). b) Tính diện tích tam giác BMN theo a. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kì thi sắp tới. Chúc các em thành công!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 8 Đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi được thiết kế với hình thức 100% tự luận, thời gian là 120 phút (không tính thời gian giao đề), bao gồm đáp án, lời giải chi tiết và thang chấm điểm. Kỳ thi sẽ diễn ra vào ngày 22 tháng 02 năm 2023. Đề thi bao gồm các câu hỏi sau: Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. Câu hỏi yêu cầu chứng minh tứ giác AMCE là hình bình hành, chứng minh các tam giác ADE và ECN bằng nhau, chứng minh tứ giác AENF là hình vuông, và tính tỉ số diện tích của hai tam giác NKL và NEP. Thí sinh lựa chọn làm một trong hai câu sau: chứng minh rằng nếu 2n (với n là số nguyên dương) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương, hoặc tìm giá trị nhỏ nhất và lớn nhất của biểu thức 2^6 + 2^3 + 1^x. Cho biểu thức A = 3^3 * 3^3 * ... * 2022^3 * 2023^3. Câu hỏi yêu cầu tìm số dư khi chia số A cho 3.
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Sytu xin trân trọng giới thiệu đến các thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 8 năm học 2022-2023 tại phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa. Đề thi này là cơ hội cho các em học sinh thể hiện tài năng, kiến thức và kỹ năng Toán của mình, đồng thời giúp học sinh rèn luyện, nâng cao kiến thức và kỹ năng Toán thông qua các bài tập thực hành và câu hỏi thảo luận.