Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 - 2024Vấn đề 1: Diện tích hình chữ nhậtVấn đề 2: Hình nónVấn đề 3: Đường tròn và tiếp tuyến Đề thi thử Toán vào năm 2023 - 2024 Chào mừng đến với đề thi thử Toán cho học sinh lớp 9, nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Đề thi bao gồm đáp án và biểu điểm để học sinh tham khảo và tự kiểm tra kiến thức. Vấn đề 1: Diện tích hình chữ nhật Cho một hình chữ nhật có diện tích bằng 40 cm2. Nếu tăng chiều rộng thêm 3 cm và tăng chiều dài thêm 3 cm, diện tích của hình chữ nhật tăng thêm 48 cm2. Hãy tính các kích thước ban đầu của hình chữ nhật. Vấn đề 2: Hình nón Bác An có một đống cát dạng hình nón, cao 2m, đường kính đáy là 6m. Bác cần 30m3 cát để sửa xong ngôi nhà của mình. Hãy tính số mét khối cát bác An cần mua thêm để đủ để sửa xong nhà (lấy π = 3,14 và làm tròn đến chữ số thập phân thứ hai). Vấn đề 3: Đường tròn và tiếp tuyến Cho đường tròn O và điểm A nằm ngoài O. Kẻ tiếp tuyến AB, AC với đường tròn O (B, C là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn O tại hai điểm D, E (AD ≠ AE không đi qua tâm O). a) Chứng minh tứ giác ABOC nội tiếp. b) Gọi H là giao điểm của OA và BC. Chứng minh 2 AB = AH = AO. c) Đường thẳng DH cắt O tại điểm thứ hai F, AF cắt O tại điểm K. Chứng minh ba điểm E, H, K thẳng hàng.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m thì diện tích đám đất sẽ tăng thêm 1m2. Tính độ dài các cạnh ban đầu của đám đất. + Cho tam giác ABC (AB <AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: [ads] a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D,E,F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.