Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hệ thức lượng trong tam giác vuông

Nội dung Các dạng toán hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Các dạng toán hệ thức lượng trong tam giác vuôngVấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 1)Vấn đề 2: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 2)Vấn đề 3: Luyện tập hệ thức về cạnh và đường cao trong tam giác vuôngVấn đề 4: Tỉ số lượng giác của góc nhọn (phần 1)Vấn đề 5: Tỉ số lượng giác của góc nhọn (phần 2)Vấn đề 6: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 1)Vấn đề 7: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 2)Ôn tập chủ đề 3Hướng dẫn giải Các dạng toán hệ thức lượng trong tam giác vuông Để giúp học sinh lớp 9 hiểu rõ và áp dụng các hệ thức lượng trong tam giác vuông, tài liệu này cung cấp các phân loại và hướng dẫn giải chi tiết. Với 35 trang tài liệu, bạn sẽ được học về: Vấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 1) - Tóm tắt lý thuyết và bài tập về tính độ dài các đoạn thẳng trong tam giác vuông. - Bài tập về nhà để củng cố kiến thức đã học. Vấn đề 2: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 2) - Tóm tắt lý thuyết và bài tập về chứng minh các hệ thức liên quan đến tam giác vuông. Vấn đề 3: Luyện tập hệ thức về cạnh và đường cao trong tam giác vuông - Tóm tắt lý thuyết, bài tập tự luyện và bài tập về nhà để rèn luyện kỹ năng giải toán. Vấn đề 4: Tỉ số lượng giác của góc nhọn (phần 1) - Tóm tắt lý thuyết, bài tập về tính tỉ số lượng giác của góc nhọn, tính cạnh và góc. - Bài tập về nhà để tự kiểm tra kiến thức. Vấn đề 5: Tỉ số lượng giác của góc nhọn (phần 2) - Tóm tắt lý thuyết, bài tập về sắp xếp dãy tỉ số lượng giác và dựng góc nhọn. Vấn đề 6: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 1) - Tóm tắt lý thuyết, bài tập giải tam giác vuông và tính cạnh, góc của tam giác. Vấn đề 7: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 2) - Tóm tắt lý thuyết, bài tập về toán ứng dụng thực tế và toán tổng hợp. Ôn tập chủ đề 3 - Tóm tắt lý thuyết và bài tập tự luyện để chuẩn bị cho kỳ thi. Hướng dẫn giải - Chi tiết hướng dẫn giải các vấn đề từ 1 đến 7 và ôn tập chủ đề 3. Với tài liệu này, việc học toán hệ thức lượng trong tam giác vuông sẽ trở nên dễ dàng và hiệu quả hơn đối với học sinh lớp 9. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Bài toán chứa tham số trong phương trình bậc hai
Tài liệu gồm 38 trang, hướng dẫn phương pháp giải bài toán chứa tham số trong phương trình bậc hai, giúp học sinh rèn luyện khi học chương trình Đại số 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. I – KIẾN THỨC CƠ BẢN 1. Ứng dụng hệ thức Vi-ét. + Điều kiện phương trình bậc hai có hai nghiệm trái dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt cùng dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt dương. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt âm. 2. Các hệ thức thường gặp. II – CÁC VÍ DỤ MINH HỌA Gồm 77 ví dụ minh họa hay và khó, có đáp án và lời giải chi tiết.
Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO