Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Như Thanh Thanh Hoá

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Như Thanh Thanh Hoá Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Như Thanh Thanh Hoá Đề học sinh giỏi lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Như Thanh Thanh Hoá Chào đón quý thầy cô và các em học sinh lớp 8, SYTU xin giới thiệu đề thi chọn học sinh giỏi văn hóa môn Toán lớp 8 cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 12 tháng 01 năm 2023. Đề thi bao gồm những câu hỏi thú vị như: Cho biểu thức A, rút gọn A và tìm số nguyên x để A chia hết cho 2. Tìm giá trị của biểu thức P khi đã biết a3 + b3 + c3 = 3abc với a, b, c là các số thực khác nhau. Tìm cặp số nguyên (x;y) thỏa mãn phương trình x3 + 3x = x2y + 2y + 5 và chứng minh x3 + 1 không chia hết cho y. Chứng minh tứ giác ABIM là hình bình hành, và chứng minh ba đường thẳng IN, MF, KE đồng quy khi tứ giác ABCD đặt ra điều kiện S = (a + b)2. Hy vọng đề thi sẽ giúp các em học sinh lớp 8 thách thức bản thân và phát triển khả năng toán học của mình. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Lê Quý Đôn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Lê Quý Đôn – Bắc Giang : + Cho các số thực a b thỏa mãn: 2 2 a b ab a b 1 0. Tính giá trị của biểu thức 3 4 Ma b 3 2 2022. + Cho a và b là các số tự nhiên thoả mãn 2 2 2 3 aa bb. Chứng minh rằng: a b và 221 a b là các số chính phương. + Cho xyz là các số thực thỏa mãn điều kiện 2 2 2 3 1011 2 x y yz z. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Qxyz.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm), thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Chọn đáp án đúng nhất: Cho hai số thực x y thỏa mãn 2 2 2 x y x y xy 2 4 6 1. Giá trị của biểu thức Axy 2022 2023 bằng? + Tam giác ABC vuông tại A có AC = 8 cm, BC = 10 cm. Tia phân giác của góc BAC cắt cạnh BC tại D. Tỉ số diện tích của tam giác ABD và tam giác ACD là? + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (0 < NC < NB), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh ∆MON vuông cân. 2. Chứng minh MN // BE. 3. Gọi H là giao điểm của KC và BD. Chứng minh: OB NC CH OH NB KH.
Đề HSG huyện Toán 8 vòng 2 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Biết rằng đa thức f(x) khi chia cho x − 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x² + x – 6. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC, lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho hình vuông ABCD có cạnh bằng a. Trên cạnh AD lấy điểm M sao cho AM = 3MD. Kẻ tia Bx cắt cạnh CD tại I sao cho ABM = MBI. Kẻ tia phân giác của CBI, tia này cắt cạnh CD tại N. a) Chứng minh rằng: MN = AM + NC. b) Tính diện tích tam giác BMN theo a.