Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm học 2018 - 2019 sở GDĐT Đồng Nai

Chiều thứ Tư ngày 24 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Đồng Nai đã tổ chức kỳ thi kiểm tra học kỳ II môn Toán lớp 12 khối THPT và GDTX năm học 2018 – 2019, kỳ thi nhằm kiểm tra lại các chủ đề kiến thức: nguyên hàm – tích phân và ứng dụng, số phức (Giải tích 12 chương 3 – 4), phương pháp tọa độ trong không gian Oxyz (Hình học 12 chương 3), kỳ thi cũng đánh dấu kết thức chương trình Toán 12. Đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Nai có mã đề 22, đề gồm 04 trang với 50 câu trắc nghiệm khách quan, thời gian học sinh làm bài thi HK2 Toán 12 là 90 phút, đề thi có đáp án mã đề 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24. Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Một người gửi 200 triệu đồng vào một ngân hàng với lãi suất r%/năm (r > 0). Nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào tiền gốc để tính lãi cho năm tiếp theo. Sau ngày gửi 4 năm, người đó nhận được số tiền gồm cả tiền gốc và tiền lãi là 252 495 392 đồng (biết rằng trong suốt thời gian gửi tiền, lãi suất không thay đổi và người đó không rút tiền ra khỏi ngân hàng). Lãi suất r%/năm (r làm tròn đến chữ số hàng đơn vị) là? [ads] + Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường y = 4cosx, y = 0, x = 0, x = pi quay quanh trục hoành bằng? + Trong không gian Oxyz, phương trình của đường thẳng đi qua điểm M(0;1;0) và vuông góc với mặt phẳng (P): x – 2y + z = 0 là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trung Giã - Hà Nội
Ngày … tháng 06 năm 2020, trường THPT Trung Giã, huyện Sóc Sơn, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội mã đề 121 và mã đề 122 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;6;2) và B(2;-2;0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;4;4), B(1;0;6), C(0;-1;2) và D(1;1;1). Gọi ∆ là đường thẳng đi qua D sao cho tổng các khoảng cách từ A, B, C đến ∆ là lớn nhất. Đường thẳng ∆ đi qua điểm nào dưới đây? + Đường thẳng y = kx + 4 cắt parabol y = (x – 2)^2 tại hai điểm phân biệt và diện tích các hình phẳng S1, S2 bằng nhau như hình vẽ sau. Mệnh đề nào dưới đây đúng?
Đề thi học kỳ 2 Toán 12 THPT năm học 2019 - 2020 sở GDĐT Hậu Giang
Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hậu Giang tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang mã đề 701 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kỳ 2 Toán 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang : + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính tốc độ truyền bệnh (người/ngày) tại thời điểm t là f'(t) = 90t – 3t^2. Nếu xem f(t) là số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t thì khi dịch đạt đỉnh điểm (tốc độ truyền bệnh lớn nhất) sẽ có khoảng bao nhiêu người nhiễm bệnh? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 3)^2 + (y + 2)^2 + (z – 1)^2 = 100 và mặt phẳng (P): 2x – 2y – z + 9 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C). Giả sử (C) có tâm H(a;b;c) và bán kính r. Có bao nhiêu số dương trong các số a, b, c và r? [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B và C sao cho H(1;2;3) là trực tâm của tam giác ABC. Tính khoảng cách h từ điểm O đến mặt phẳng (P).
Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT Phan Bội Châu - Đắk Lắk
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 mã đề 121 và mã đề 122 đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk; đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126, 127, 128. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk : + Tập hợp điểm biểu diễn của số phức z thỏa mãn |z – 1 + 3i| = |z¯ + 2 – i| là: A. Đường thẳng có phương trình 6x – 4y – 5 = 0. B. Đường thẳng có phương trình 3x + 2y – 5 = 0. C. Đường thẳng có phương trình 6x + 4y – 5 = 0. D. Đường thẳng có phương trình 3x – 2y – 5 = 0. + Mặt cầu (S): x2 + y2 + z2 – 4x + 3y – 2z = 0 cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác điểm O). Phương trình tham số đường thẳng d là giao tuyến mặt phẳng (ABC) và mặt phẳng (P): x – y + z – 1 = 0 là? [ads] + Trong không gian Oxyz, cho vật thế nằm giữa hai mặt phẳng x = 0 và x = 3. Biết rằng thiết diện của vật thế cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 3) là một hình vuông cạnh là √(9 – x^2). Tính thể tích V của vật thể.
Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT Lê Quý Đôn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 356, 525. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 1 và điểm A(0;0;2). Đường thẳng d thay đổi qua A luôn cắt mặt cầu (S) tại hai điểm B và C sao cho B là trung điểm của AC, biết rằng tập hợp điểm B luôn nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. [ads] + Cho số phức z = 2 + i. Trong mặt phẳng Oxy, gọi A và B lần lượt là điểm biểu diễn của số phức z và z¯. Tính diện tính tam giác OAB (với O là gốc tọa độ). + Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thỏa |2z/(1 – i) + 2 + 4i| = |z(1 – i) + 6 + 4i| là đường thẳng có phương trình ax + by – 4 = 0. Tính a^2 + b^2.