Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Sau đây là Đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 của phòng GD&ĐT Nho Quan - Ninh Bình, bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 phòng GD&ĐT Nho Quan - Ninh Bình: 1. Chứng minh rằng số có dạng \(432An^{n}+6116\) chia hết cho 24 với mọi số tự nhiên n. 2. Đa thức \(f(x)\) khi chia cho \(x-1\) dư 4, khi chia cho \(2x-1\) dư 2\(3x\). Tìm phần dư khi chia \(f(x)\) cho \(2x^{2}+1\). 3. Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 3.1. Chứng minh KM vuông góc với DB. 3.2. Chứng minh rằng: \(KC \times KD = KH \times KB\). 3.3. Ký hiệu \(ABM, DCM, S, S'\) lần lượt là diện tích các tam giác ABM và DCM. 3.3.1. Chứng minh tổng \(ABM, DCM, S, S'\) không đổi. 3.3.2. Xác định vị trí của điểm M trên cạnh BC để \(ABM, DCM, S, S'\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.