Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàm Nghi Hà Tĩnh

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàm Nghi Hà Tĩnh Bản PDF Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Hàm Nghi – Hà Tĩnh gồm 30 câu trắc nghiệm (06 điểm) và 03 câu tự luận (04 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Hàm Nghi – Hà Tĩnh : + Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả ba lớp trồng được là 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh? A. 10A có 45 em, lớp 10B có 43 em, lớp 10C có 40 em. B. 10A có 40 em, lớp 10B có 43 em, lớp 10C có 45 em. C. 10A có 43 em, lớp 10B có 40 em, lớp 10C có 45 em. D. 10A có 45 em, lớp 10B có 40 em, lớp 10C có 43 em. + Cho tam giác ABC với AB = 2; AC = 3; BAC = 60 độ. Gọi D là điểm đối xứng với B qua C, N là trung điểm của AD, M là điểm thỏa mãn 2AM + 3BM – 4CM = 0. Khi đó, độ dài đoạn thẳng MN bằng? + Biết hàm số y = ax2 + bx + c đạt giá trị lớn nhất bằng 1 tại x = 1 và đồ thị của nó đi qua điểm A(2;0). Khi đó: a + 2b + 3c bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Thiêm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Thiêm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Thiêm – TP HCM : + Trong mặt phẳng (Oxy), cho ba điểm A(2;-1); B(4;4); C(-2;-4). a) Chứng minh A, B, C tạo thành tam giác. Tính chu vi tam giác ABC. b) Tìm D sao cho tứ giác AODC là hình bình hành. Tìm tọa độ tâm I của hình bình hành. c) Tìm tọa độ trực tâm H của tam giác ABC. + Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2x^2 – 4x – 3. + Tìm hàm số y = ax^2 + bx + 8 biết đồ thị của hàm số là một parabol có đỉnh S(-3;17).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT An Dương Vương - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT An Dương Vương, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT An Dương Vương – TP HCM : + Cho tam giác ABC có AB = 5, AC = 6, góc A = 60 độ. Tính BC, diện tích S, bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp r của tam giác ABC. + Tính số đo góc A trong tam giác ABC biết rằng 5ma^2 = mb^2 + mc^2 (với ma, mb, mc lần lượt là độ dài đường trung tuyến xuất phát từ các đỉnh A, B, C). + Với m là tham số của phương trình mx – 2m + 2x – 1 = 0. Tìm m để phương trình đã cho vô nghiệm.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Tìm các giá trị của tham số m để phương trình x^2 – (m – 1)x + m – 1 = 0 có nghiệm kép. + Giải và biện luận phương trình (m^2 – 4)x = m + 2 theo tham số m. + Trong mặt phẳng tọa độ Oxy, cho a = (2;-5), b = (1;3), c = (3;4). Phân tích c theo hai véctơ a và b.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.