Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương

Nội dung Đề Olympic Toán 8 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề Olympic Toán 8 năm 2017 - 2018 phòng GD&ĐT Kinh Môn Hải Dương Đề Olympic Toán 8 năm 2017 - 2018 phòng GD&ĐT Kinh Môn Hải Dương Xin chào quý thầy cô và các bạn học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến các bạn đề Olympic Toán lớp 8 năm 2017 - 2018 do phòng GD&ĐT Kinh Môn - Hải Dương tổ chức. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trong đề thi, có các câu hỏi thú vị như: + Trên một nửa mặt phẳng có bờ là đoạn AB, chúng ta cần chứng minh rằng AB2 = 4 AC.BD trong một hình học phức tạp. + Đề cũng đưa ra bài toán về đa thức, yêu cầu tìm giá trị của x sao cho f(x) chia hết cho x2 + 2. + Cuối cùng là bài toán về tổng của ba số dương và tìm giá trị nhỏ nhất của biểu thức P trong điều kiện đã cho. Hy vọng rằng đề thi sẽ giúp các bạn ôn tập và củng cố kiến thức một cách hiệu quả. Chúc các bạn thành công! Xin cảm ơn!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Một người dự định đi xe máy từ A đến B với vận tốc 30km/h, nhưng sau khi đi được 1 giờ người ấy nghỉ hết 15 phút, do đó phải tăng vận tốc thêm 10km/h để đến B đúng giờ đã định. Tính quãng đường AB? + Cho hình vuông ABCD có AC cắt BD tại O, M là điểm bất kỳ thuộc cạnh BC (M khác B, C).Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 2016. Tìm giá trị nhỏ nhất của biểu thức: P.
Đề thi HSG Toán 8 cấp huyện năm 2016 - 2017 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE cắt nhau tại H. a) Chứng minh tam giác ABD đồng dạng tam giác ACE. b) Chứng minh BH.HD = CH.HE. c) Nối D với E, cho biết BC = a, AB = AC = b. Tính độ dài đoạn thẳng DE theo a. + Tìm số nguyên x thỏa mãn cả hai bất phương trình. + Phân tích đa thức sau thành nhân tử.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. a. Chứng minh: KF // EH. b. Chứng minh: các đường thẳng EK, HF, BD đồng quy. c. Chứng minh: SMKAE = SMHCF. + Cho biểu thức: A. a. Rút gọn A. b. Tìm giá trị nguyên của x để A có giá trị nguyên. + Chứng minh rằng: n3 + 2012n chia hết cho 48 với mọi n chẵn.
Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Hoài Nhơn - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định, kỳ thi được diễn ra ngày 23 tháng 04 năm 2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có A > B. Trên cạnh BC lấy điểm H sao cho HAC = ABC. Đường phân giác của góc BAH cắt BH ở E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. Chứng minh rằng: CF // AE. + Chứng minh rằng: Chữ số tận cùng của hai số tự nhiên n và n5 là như nhau. + Tìm tất cả các số nguyên x thỏa mãn: x2 + x – p = 0; với p là số nguyên tố.